

ФУНКЦИОНАЛЬНАЯ СХЕМА

СМ – смеситель частот; УПЧ – усилитель промежуточных частот; КД – квадратурный демодулятор

ПРИМЕНЕНИЕ

- Приемники с GSM, TDMA и CDMA
- Приборы на батарейках
- Спутниковые станции

АНАЛОГИ

AD607 (Analog Devices, США)

ОСНОВНЫЕ ПАРАМЕТРЫ

Диапазон входных частот, ГГц	2
Напряжение питания, В	+3,0
Ток потребления, мА	17
Тип корпуса	MK 5159.24-1H3

КРАТКОЕ ОПИСАНИЕ

1324XA1У представляет собой интегральный малопотребляющий приемник сигналов с амплитудной модуляцией, включающий малошумящий смеситель с регулируемым коэффициентом передачи, регулируемый усилитель промежуточных частот (ПЧ), квадратурный демодулятор и квадратурный генератор (КГУН) с ФАПЧ.

Смеситель представляет собой двойную балансную ячейку Гилберта и включает в себя усилитель - ограничитель, который снижает требуемый уровень сигнала гетеродина до минус 15 дБм.

Квадратурный демодулятор обеспечивает синфазный и квадратурный выходные сигналы для последующей обработки.

Предназначен для температурного диапазона от –60°C до +125°C при напряжении питания от 2,8 В до 3,2 В.

Поставляется в металлокерамическом корпусе МК 5159.24-1H3 (1324XA1У), а также в бескорпусном исполнении (A4706-01H4).

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ

(при $U_n = +3$ B, T = 25°C, $P_{BX pq} = -15$ дБм, $P_{BX ret} = -5$ дБм, fnq = 10 МГц)

Параметр, единица измерения	Режим измерения	Не менее	Тип.	Не более
Смеситель				
Верхняя граничная частота диапазона входных частот, МГц		550	2000	
Коэффициент преобразования, дБ	f _{гет} = 90 МГц		21	
Верхняя граничная частота диапазона выходных частот, МГц	f_{rer} = 90 МГц, $\Delta K_n = -3$ дБ, Rн = 165 Ом		70	
Входная точка компрессии коэффициента преобразования на 1 дБ, дБм	f _{гет} = 90 МГц, f _{рч} = 100 МГц	-20	-15	
Коэффициент шума, дБ			14,5	15
Остаточный уровень РЧ на выходе ПЧ, дБм	f _{пч} = 10 МГц, Р _{рч} = -20 дБм, без		-30	
Остаточный уровень ГЕТ на выходе ПЧ, дБм	фильтрации	-25	-35	
Мощность гетеродина, дБм		-15		-5
Усилитель ПЧ				
Полоса пропускания усилителя, МГц	$\Delta K_n = -3$ дБ, $U_{GAIN} = 1$ В		48	
Схема управления коэффициентом передачи				
Диапазон регулировки коэффициента усиления, дБ	СМ + УСПЧ		73,3	
Квадратурный демодулятор				
Фазовая ошибка, градус	f _{пч} = 10 МГц, f _{вых} = 500 кГц, U _{п-п} = 900 мВп-п		2	
Коэффициент преобразования, дБ			12	
Верхняя граничная частота ДМ, МГц	ΔК _п = – 3 дБ		0,74	
Схема отключения				
Напряжение переключения, В			1,7	
ИСТОЧНИК ПИТАНИЯ				
Напряжение питания, В		+2,8	+3,0	+3,2
Ток потребления, мА			17	

РЧ – сигнал радиочастоты на выводах RFP, RFN;

ПЧ – сигнал промежуточной частоты, присутствует на выводах MOUT, IFP, IFN, IFOUT, INDM;

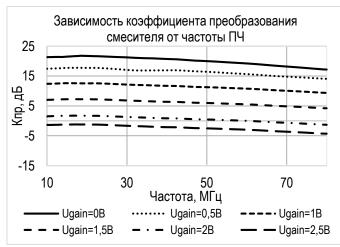
ГЕТ – сигнал гетеродина на выводе LO.

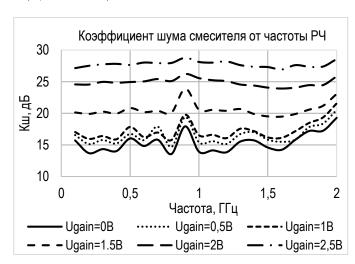
ПРЕДЕЛЬНЫЕ ЗНАЧЕНИЯ ЭКСПЛУАТАЦИОННЫХ ПАРАМЕТРОВ

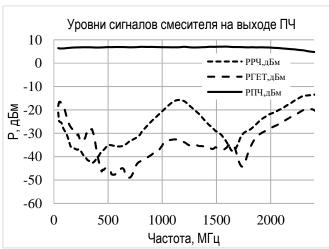
Параметр, единица измерения	Не менее	Не более
Напряжение питания, В	2,6	3,4
Напряжение управления, В		3
Мощность на входе РЧ, дБм		0
Мощность на входе гетеродина, дБм		0
Мощность на входе ФАПЧ, дБм		10
Рассеиваемая мощность, мВт		80

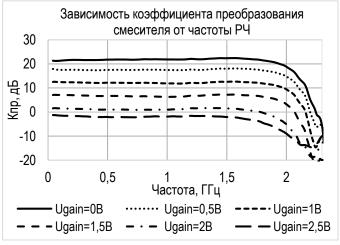
Использование микросхемы в предельных режимах эксплуатации допускается, если температура кристалла не превышает 150°C.

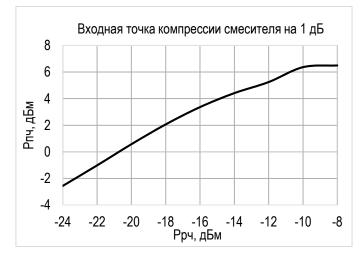
Не допускается эксплуатация изделия при одновременном использовании двух и более предельных режимов.

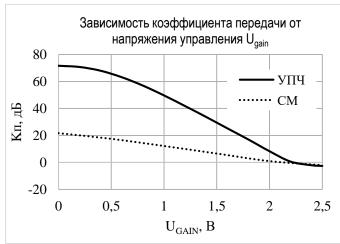

Значение рассеиваемой мощности приведено для температуры +25°C.

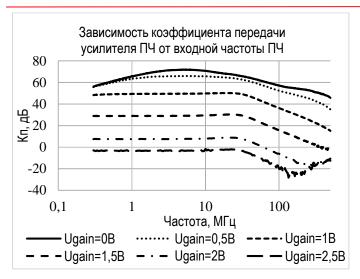

E-mail: info@electron-engine.ru Телефон: +7 (495)761-75-23

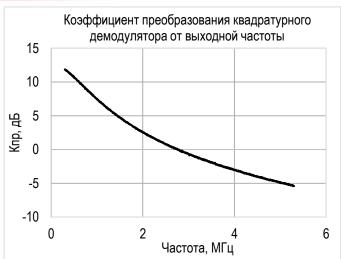


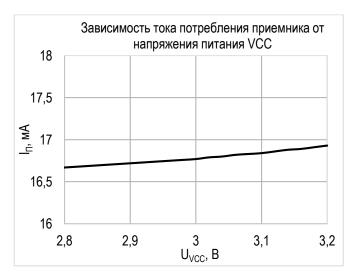

Режимы измерения параметров:

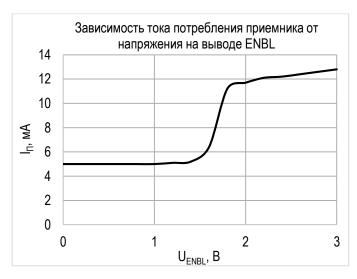

 $U_n = +3$ В, $P_{BX \ ret} = -5$ дБм, $P_{BX \ pq} = -15$ дБм, $f_{nq} = 10$ МГц, $f_{ret} = 90$ МГц, $f_{pq} = 100$ МГц

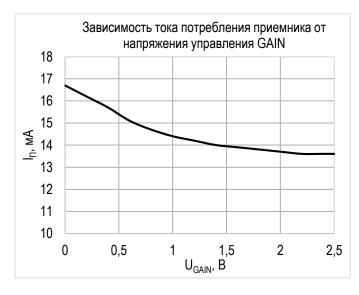


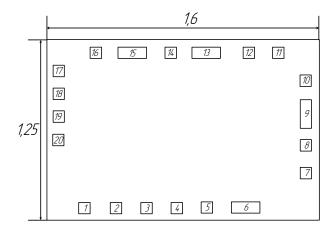




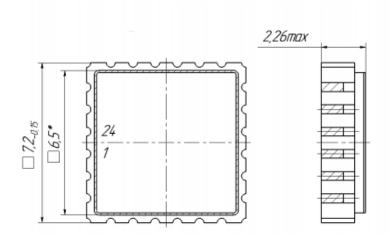


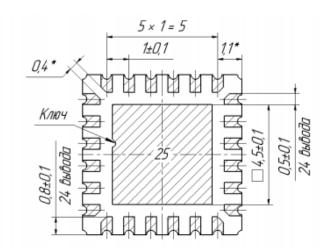






ГАБАРИТНЫЕ РАЗМЕРЫ 1324ХА1УН4 (бескорпусное исполнение)




НАЗНАЧЕНИЕ ВЫВОДОВ 1324ХА1УН4

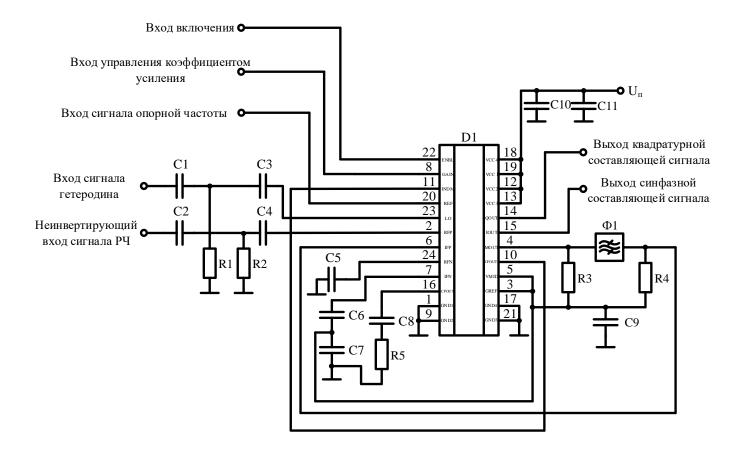
Номер вывода	Назначение	Обозначение на функциональной схеме
1	Выход смесителя частоты	MOUT
2	Выход источника напряжения (0,5 · U _п)	VMID
3	Неинвертирующий вход сигнала усилителя ПЧ	IFP
4	Инвертирующий вход сигнала усилителя ПЧ	IFN
5	Напряжение управления коэффициентом усиления	GAIN
6	Общий вывод	GND2
7	Выход усилителя ПЧ	IFOUT
8	Вход демодулятора	INDM
9	Напряжения питания	VCC2
10	Выход квадратурной составляющей сигнала	QOUT
11	Выход синфазной составляющей сигнала	IOUT
12	Выход зарядно-разрядного блока	CPOUT
13	Напряжения питания	VCC1
14	Вход сигнала опорной частоты	REF
15	Вход включения (GND – выкл., VCC – вкл.)	ENBL
16	Общий вывод	GND1
17	Вход сигнала гетеродина	LO
18	Инвертирующий вход сигнала РЧ	RFN
19	Неинвертирующий вход сигнала РЧ	RFP
20	Вход для изменения регулировочной характеристики коэффициента усиления	GREF

ГАБАРИТНЫЕ РАЗМЕРЫ 1324ХА1У (КОРПУС МК 5159.24-1Н3)

НАЗНАЧЕНИЕ ВЫВОДОВ 1324ХА2У

Номер вывода	Назначение	Обозначение на функциональной схеме
1	Общий вывод	GND1
2	Неинвертирующий вход сигнала РЧ	RFP
3	Вывод для изменения регулировочной характеристики коэффициента усиления	GREF
4	Выход смесителя частоты	MOUT
5	Выход источника напряжения (0,5 · U _n)	VMID
6	Неинвертирующий вход сигнала ПЧ	IFP
7	Инвертирующий вход сигнала ПЧ	IFN
8	Вход управления коэффициентом усиления	GAIN
9	Общий вывод	GND2
10	Выход ПЧ	IFOUT
11	Вход демодулятора	INDM
12	Напряжение питания	VCC2
13	Напряжение питания	VCC3
14	Выход квадратурной составляющей сигнала	QOUT
15	Выход синфазной составляющей сигнала	IOUT
16	Выход зарядно-разрядного блока ФАПЧ	CPOUT
17	Общий вывод	GND4
18	Напряжение питания	VCC4
19	Напряжение питания	VCC1
20	Вход сигнала опорной частоты	REF
21	Общий вывод	GND3
22	Вход включения (GND – выкл., VCC – вкл.)	ENBL
23	Вход сигнала гетеродина	LO
24	Инвертирующий вход сигнала РЧ	RFN

Материал корпуса: металлокерамика.


Содержание драгоценных металлов в корпусе микросхемы на 1000 шт.:

- золото 2,53 г;
- серебро 3,34 г.

Цветных металлов не содержится. Масса микросхемы – не более 1,0 г.

ТИПОВАЯ СХЕМА ВКЛЮЧЕНИЯ 1324ХА1У

D1 – микросхема 1324XA1У;

R1 = R2 -резисторы 51 Ом \pm 5%;

R3 = R4 -резисторы 330 Ом $\pm 5\%$;

R5 – резистор 1кОм \pm 5%;

C1 = C2 = C3 = C4 = C5 = C6 = C7 = C9 = C10 – керамические конденсаторы 100 нФ ± 10 %;

C8 – керамический конденсатор 10 нФ \pm 10 %;

C11 – керамический конденсатор 4,7 мк Φ ± 10 %;

Ф1 – полосовой фильтр 10,7 МГц, полоса пропускания ± 30 кГц.

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

Для достижения гарантируемых параметров, а также обеспечения устойчивой работы микросхемы необходимо:

- использовать цепи соединения с минимальной длиной;
- использовать на печатной плате заземляющие переходные отверстия для снижения индуктивности;
 - использовать линии с волновым сопротивлением 50 Ом;
- подключать развязывающие конденсаторы в непосредственной близости от выводов микросхемы. Значения нижних рабочих частот входного и выходного сигналов ограничиваются номиналом разделительных конденсаторов. Все СВЧ входы и выходы микросхемы имеют постоянную составляющую напряжения, поэтому необходимо использовать разделительные конденсаторы.

Вывод ENBL используется для управления режимом генератора опорного тока. Выключение генератора опорного тока и перевод микросхемы в «спящий» режим происходит по низкому логическому уровню напряжения стандарта ТТЛ, при высоком логическом уровне происходит переход микросхемы в рабочее состояние.

При работе с изделием необходимо руководствоваться требованиями ОСТ 11 073.062 и ОСТ 11 073.063.

РЕКОМЕНДАЦИИ ПО ПАЙКЕ МИКРОСХЕМ

Пайку микросхем рекомендуется проводить в соответствии с требованиями АЕЯР.431000.760ТУ в ОСТ 11 073.063.

Для микросхем в корпусе МК 5130.16-АНЗ допускается использовать методы пайки, обеспечивающие нагрев платы с микросхемами (в защитной среде) до температуры не более 250°С со скоростью нагрева и охлаждения не более 50°С/мин.

Крепление микросхемы производится пайкой выводов непосредственно к печатной плате. Для улучшения теплоотвода рекомендуется припаивать все выводы микросхемы. При монтаже выводов микросхемы в аппаратуру одножальным паяльником:

- время пайки каждого вывода должно быть не более 3 сек.;
- интервал между пайками соседних выводов должен быть не менее 3 сек.

Отмывку рекомендуется проводить в соответствии с требованиями ОСТ 11 073.063.

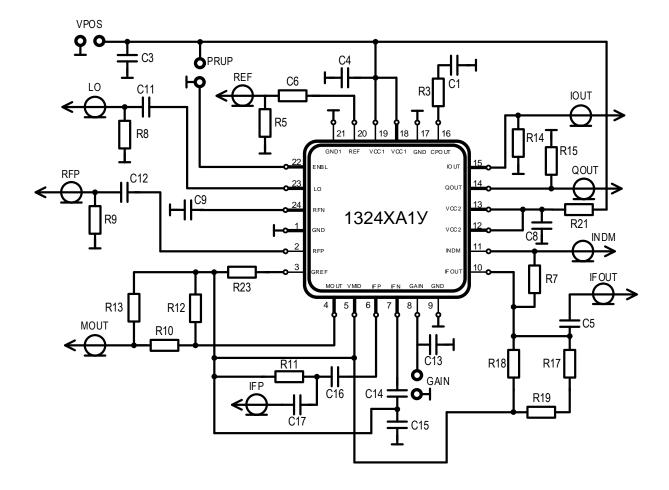
Очистку выводов МИС и печатных плат с МИС следует производить после лужения и пайки жидкостями, не оказывающими влияния на покрытие, маркировку и материал корпуса. Если при пайке и лужении использовались некоррозионные или слабокоррозионные флюсы, то время между операциями пайки (лужения) и очистки должно быть не более 24 часов

В случае применения коррозионных флюсов время между операциями пайки (лужения) и очистки не должно превышать 1 часа.

Очистку от остатков флюса следует производить одним из способов, рекомендованных ГОСТ 20.39.405.

Допускается повторная очистка указанными выше способами, за исключением очистки в ВЧ плазме, при условии полного высыхания растворителя и отсутствии нарушений целостности покрытия и маркировки на корпусах микросхем.

ДЕМОНСТРАЦИОННАЯ ПЛАТА ПП-1324ХА1У



СПИСОК КОМПОНЕНТОВ ПЕЧАТНОЙ ПЛАТЫ

LO, RFP, MOUT, IFP, IFOUT, INDM, QOUT, IOUT, REF	Разъем SMA 50 Ом
R3	Резистор 1 кОм
R5	Резистор 100 кОм
R8, R9	Резистор 50 Ом
R10, R17	Резистор 301 Ом
R11	Резистор 51,1 Ом
R12, R18	Резистор 332 Ом
R13, R19	Резистор 54,9 Ом
R7	Резистор 316 Ом
R14, R15	Резистор 20 Ом
R21, R23, C6	Резистор 0 Ом
C1	Конденсатор 10 нФ
C3, C14, C15, C16, C17	Конденсатор 1 мкФ
C4, C8	Конденсатор 0,1 мкФ
C5, C9, C11, C12, C13	Конденсатор 100 нФ

ЭЛЕКТРИЧЕСКАЯ ПРИНЦИПИАЛЬНАЯ СХЕМА ДЕМОНСТРАЦИОННОЙ ПЛАТЫ

12

ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА

1324ХА1УН4	МИС в бескорпусном исполнении	
1324ХА1У	МИС в металлокерамическом корпусе МК 5159.24-1Н3	
ПП-1324ХА1У	Демонстрационная плата	

По вопросам заказа обращаться:

ООО «ИПК «Электрон-Маш»

124365, г. Москва, г. Зеленоград, к1619, Телефон: +7 (495) 761-75-23

E-mail: info@electron-engine.ru

В связи с недостаточностью имеющейся справочной информации на микросхемы и модули отечественного производства ООО «ИПК «Электрон-Маш» поставило перед собой задачу по исследованию данной номенклатуры с последующим оформлением справочных материалов.

За содержание материалов предприятие-производитель изделия ответственности не несёт.