

LCD Monitor Service Manual

MODEL: LCT-17HT

Model No.: LCT-17HT

CONTENTS

SPECIFICATION	4
PANEL: HT17E12-200	5
8 BIT MTP MICROCONTROLLER	27
T0947 SCALER IC FPR XGA/SXGA LCD MONITORS	63
BLOCK DIAGRAM	184
TV TUNER	185
EXPLODED VIEW & PART LIST	186

SPECIFICATION

> Resolution: 17.0 inch SXGA (1280 x 1024 @75Hz)

➤ Color display: 16,777,216 colors

> DPMS (Display Power Management Signaling)

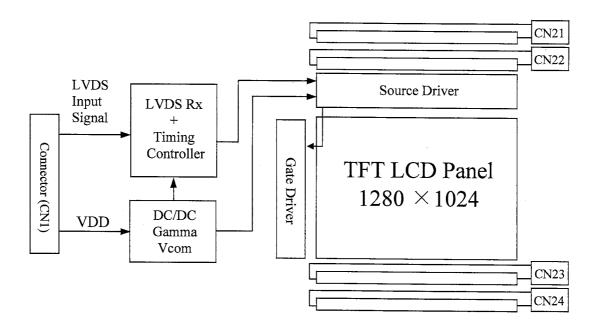
➤ OSD (On Screen Display)

> Auto Configuration: Hot Key

> Speaker [L + R: 3W + 3W = 6W (max)]

DDC 1/2 B: Plug & Play

Model No.: LCT-17HT



PANEL: HT17E12-200

1. GENERAL DESCRIPTION

1.1 Introduction

HT17E12-200 is a color active matrix TFT LCD module using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This module has a 17.0 inch diagonally measured active area with SXGA resolutions (1280 horizontal by 1024 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 16,194,227 colors. The TFT-LCD panel used for this module is adapted for a low reflection and higher color type.

1.2 Features

- ➤ LVDS Interface with 2 pixel / clock
- > High-speed response
- ➤ Low power consumption
- ➤ 6-bit (FRC) color depth, display 16,194,227 colors
- ➤ Incorporated edge type back-light (Four lamps)
- ➤ High luminance and contrast ratio, low reflection and wide viewing angle
- DE (Data Enable) mode

Model No.: LCT-17HT

1.3 Applications

- > Desktop Type of PC & Workstation Use
- ➤ Slim-Size Display for Stand-alone Monitor
- Display Terminals for Control System
- Monitors for Process Controller

1.4 General Specifications

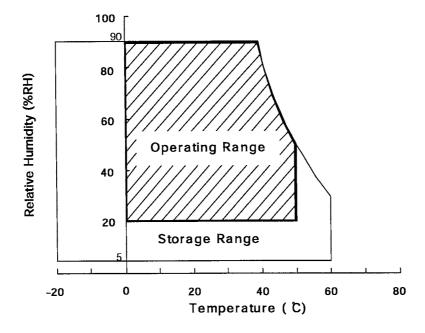
The followings are general specifications at the model HT17E12-200

<Table 1. General Specifications>

Parameter	Specification	Unit
Active area	337.92 (H) × 270.336(V)	Mm
Number of pixels	1280(H) × 1024(V)	pixels
Pixel pitch	$0.264(H) \times 0.264(V)$	Mm
Pixel arrangement	RGB Vertical stripe	
Display colors	16,194,227	colors
Display mode	Normally White	
Dimensional outline	$358.5(H) \times 296.5(V) \times 17.0(D)$ type	Mm
Weight	1900 max.	gram
Back-light	Top/Bottom edge side 4-CCFL type	

Note: 1. CCFL (Cold Cathode Fluorescent Lamp)

2.0 ABSOLUTE MAXIMUM RATINGS


The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.

<Table 2. Absolute Maximum Ratings> [VSS = GND =0V]

Parameter	Symbol	Min	Max	Unit	Remarks
Power Input Voltage	V_{DD}	VSS-0.5	6.5	V	Ta=25°C
Logic Input Voltage	V _{IN}	VSS-0.3	V _{DD} +0.3	V	1 1a-23 C
Back-light Lamp Current	I_{BL}	3	7	mA	
Back-light lamp	F_{L}	30	(80)	KHz	
Frequency					
Operating Temperature	T _{OP}	0	+50	°C	1)
Storage Temperature	T_{ST}	-20	+60	°C	1)

Notes:

- 1. Temperature and relative humidity range are shown in the figure below.
- 2. Wet bulb temperature should be 39°C max and no condensation of water.

3.0 ELECTRICAL SPECIFICATIONS

< Table 3. Electrical specifications > $[Ta = 25 \pm 2^{\circ}C]$

Parameter		Min	Тур	Max	Unit	Remarks
Power Supply Voltage	V_{DD}	4.5	5.0	5.5	V	Note1
Power Supply Current	I_{DD}	-	580	700	mA	Note1
Permissible Input Ripple	V_{RF}			100	mV	$V_{\rm DD} = 5.0 \mathrm{V}$
Voltage						
High Level Differential Input	V_{IH}		-	+100	mV	
Threshold Voltage						Vcm
Low Level Differential Input	$V_{\rm IL}$	-100	-		mV	= 1.2V typ
Threshold Voltage						
Back-light Lamp Voltage	V_{BL}	690	700	840	V _{rms}	
Back-light Lamp Current	I_{BL}	3.0	6.5	7.0	mA_{rms}	
Back-light Lamp operating	F_{L}	30	-	70	KHz	Note 2
Frequency						
Lown Stort Woltago			940	1170	V _{rms}	25°C, Note 3
Lamp Start Voltage			1340	1570	V _{rms}	0°C, Note 3
Lamp Life		40000	50000		hrs	$I_{BL} = 6.5 \text{mA}$
	P_{D}		2.9		W	I_{BL} = 6.5mA,
Power Consumption	P_{BL}		18.2		W	Note 4
	P _{total}		21.1		W	

Notes:

- 1. The supply voltage is measured and specified at the interface connector of LCM. The current draw and power consumption specified is for VDD = 5.0V, Frame rate= 75Hz and Clock frequency = 67.5MHz. Test Pattern of power supply current
 - a. Typ: Black pattern
 - b. Max: Dot pattern
- 2. The lamp frequency should be selected as different as possible from the horizontal synchronous frequency and its harmonics to avoid interference, which may cause line flow on the display
- 3. The voltage above this value should be applied to the lamps for more than 1 second to start-up. Otherwise the lamps may not be turned on.
- 4. Calculated value for reference (V $_{BL}$ \times $\,$ $I_{BL})$ \times 4 excluding inverter loss.

Model No.: LCT-17HT

4.0 OPTICAL SPECIFICATIONS

4.1 Overview

The test of Optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature = $25\pm2^{\circ}$ C) with the equipment of Luminance meter system (Goniometer system and TOPCON BM-5) and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of θ and ϕ equal to 0° . We refer to $\theta\phi=0$ (= θ 3) as the 3 o'clock direction (the "right"), $\theta\phi=90$ (= θ 12) as the 12 o'clock direction ("upward"), $\theta\phi=180$ (= θ 9) as the 9 o'clock direction ("left") and $\theta\phi=270$ (= θ 6) as the 6 o'clock direction ("bottom"). While scanning θ and/or ϕ , the center of the measuring spot on the display surface shall stay fixed. The measurement shall be executed after 30 minutes warm-up period. VDD shall be 5.0V +/- 10% at 25°C. Optimum viewing angle direction is 6 o'clock.

4.2 Optical Specifications [VDD=5.0V, Frame rate=60Hz, Clock=54MHz, IBL = 6.5mA, Ta = 25±2°Q

Param	neter		Symbol	Condition	Min	Тур	Max	Unit	Remark	
	Ша	rizontal	Θ3		75	80	-	Deg		
	по	HZOHIAI	Θ_9	CR>10	75	80	-	Deg		
	Va	rtical	Θ_{12}	CK/10	60	65	-	Deg		
Viewing	Ve	iticai	Θ_6		60	65	-	Deg	Note 1	
Angle	Ца	rizontal	Θ_3		80	85	-	Deg	Note 1	
	по	HZOHIAI	Θ_9	CR>5	80	85	-	Deg		
	Ve	rtical	Θ_{12}	CK>3	70	75	-	Deg		
		iticai	Θ_6		70	75	-	Deg		
Luminance con	ntrast	ratio	CR		350	430	-		Note 2	
Luminance of	white)	Y_{W}		200	250	-	cd/m ²	Note 3	
White luminar uniformity	nce		⊿ Y		-	-	1.2		Note 4	
		XX //	Wx		0.270	0.300	0.330			
		White	Wy	Θ = 0°	0.305	0.335	0.365			
D		Dad	Rx		0.599	0.629	0.659			
Reproduction of color		Red	Ry	(Center) Normal	0.324	0.354	0.384		Note 5	
of color		Green	Gx	Viewing	0.257	0.287	0.317		Note 5	
		Green	Gy	Angle	0.568	0.598	0.628			
		Blue	Bx	Aligic	0.115	0.145	0.175			
			Ву		0.073	0.103	0.133			
Dagnonga timo	Dannana tima		Tr		-	5	30	msec	Note 6	
Kesponse time	esponse time		Td		-	15] 30	msec	Note 0	
Cross talk			CT		-	-	2.0	%	Note 7	

Model No.: LCT-17HT

Note:

- 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface.
- 2. Contrast measurements shall be made at viewing angle of θ = 0° and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (See FIGURE 1 shown in Appendix) Luminance Contrast Ratio (CR) is defined mathematically.

CR = <u>Luminance when displaying a white raster</u> Luminance when displaying a black raster

- 3. Center Luminance of white is defined as the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in FIGURE 2 for a total of the measurements per display.
- 4. The White luminance uniformity on LCD surface is then expressed as : $\triangle Y = Maximum$ Luminance of five points / Minimum Luminance of five points (See FIGURE 2 shown in appendix).
- 5. The color chromaticity coordinates specified in Table 4. shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.
- 6. The electro-optical response time measurements shall be made as FIGURE 3 shown in Appendix by switching the "data" input signal ON and OFF. The times needed for the luminance to change from 10% to 90% is Td, and 90% to 10% is Tr.
- 7. Cross-Talk of one area of the LCD surface by another shall be measured by comparing the luminance (Y_A) of a 25mm diameter area, with all display pixels set to a gray level, to the luminance (Y_B) of that same area when any adjacent area is driven dark. (See FIGURE 4 shown in Appendix).

Model No.: LCT-17HT

5.0 INTERFACE CONNECTION

5.1 Electrical Interface Connection

CN11: Module Side Connector : FI-XB30S-HF (JAE) or Equivalent

User Side Connector : FI-X30H-HF (JAE) or equivalent

Pin No	Symbol	Function	Remark
1	RXO0-	LVDS ODD 0 – SIGNAL	
2	RXO0+	LVDS ODD 0 + SIGNAL	
3	RXO1-	LVDS ODD 1 – SIGNAL	
4	RXO1+	LVDS ODD 1 + SIGNAL	
5	RXO2-	LVDS ODD 2 – SIGNAL	
6	RXO2+	LVDS ODD 2 + SIGNAL	
7	GND	GROUND	
8	RXOCLK-	LVDS ODD CLOCK – SIGNAL	
9	RXOCLK+	LVDS ODD CLCOK + SIGNAL	
10	RXO3-	LVDS ODD 3 – SIGNAL	
11	RXO3+	LVDS ODD 3 + SIGNAL	
12	RXE0-	LVDS EVEN 0 – SIGNAL	
13	RXE0+	LVDS EVEN 0 + SIGNAL	
14	GND	GROUND	
15	RXE1-	LVDS EVEN 1 – SIGNAL	
16	RXE1+	LVDS EVEN 1 + SIGNAL	
17	GND	GROUND	
18	RXE2-	LVDS EVEN 2 – SIGNAL	
19	RXE2+	LVDS EVEN 2 + SIGNAL	
20	RXECLK-	LVDS EVEN CLOCK – SIGNAL	
21	RXECLK+	LVDS EVEN CLOCK + SIGNAL	
22	RXE3-	LVDS EVEN 3 – SIGNAL	
23	RXE3+	LVDS EVEN 3 + SIGNAL	
24	GND	GROUND	
25	NC	NO CONECTION	
26	DE	NO CONECTION	
27	NC	NO CONECTION	
28	VDD		
29	VDD	POWER SUPPLY (+5.0V)	
30	VDD		

Model No.: LCT-17HT

5.2 LVDS Interface (Tx: THC63LVDF83A or Equivalent)

	Input signal	Trans	mitter	Inter	face	FI-X30S-HF	Remark
		Pin No	Pin No	System (Tx)	TFT-LCD (Rx)	Pin No.	
	OR0	51					
	OR1	52					
	OR2	54	10	OUTO	DVO0	1	
	OR3	55	48	OUT0- OUT0+	RXO0- RXO0+	1 2	
	OR4	56	47	0010+	KXU0+	2	
	OR5	3					
	OG0	4					
	OG1	6					
	OG2	7					
	OG3	11	46	OLUT1	DVO1	2	
	OG4	12	46	OUT1-	RXO1-	3	
	OG5	14	45	OUT1+	RXO1+	4	
	OB0	15					
S	OB1	19					
ODDTADS	OB2	20					
DD 1	OB3	22					
0	OB4	23	12	OLUTA	DVO2	_	
	OB5	24	42	OUT2-	RXO2-	5	
	HSYNC	27	41	OUT2+	RXO2+	6	
	VSYNC	28					
	DE	30					
	MCLK	31	40	CLKOUT-	RXO CLK-	8	
			39	CLKOUT+	RXO CLK+	9	
	OR6	50					
	OR7	2					
	OG6	8	20	OLUTA:	DVO2	10	
	OG7	10	38	OUT3+	RXO3-	10	
	OB6	16	37	OUT3-	RXO3+	11	
	OB7	18					
	RSVD	25					
	ER0	51					
	ER1	52					
EVEN LVDS	ER2	54	40	OUTO	DVE	12	
N	ER3	55	48	OUT0-	RXE0-	12	
3VE	ER4	56	47	OUT0+	RXE0+	13	
	ER5	3					
	EG0	4					

Model No.: LCT-17HT Version: 1.0

	Input signal	Trans	mitter	Inter	face	FI-X30S-HF	Remark
		Pin No	Pin No	System (Tx)	TFT-LCD (Rx)	Pin No.	
	EG1	6					
	EG2	7					
	EG3	11	46	OUT1-	RXE1-	15	
	EG4	12	45	OUT1+	RXE1-	16	
	EG5	14	43	0011+	KAE1 ⁺	10	
	EB0	15					
	EB1	19					
	EB2	20					
	EB3	22					
	EB4	23	42	OUT2 –	RXE2-	18	
EVEN LVDS	EB5	24	41	OUT2+	RXE2+	19	
Z	HSYNC	27	71	00121	KAE2	1)	
EVE	VSYNC	28					
	DE	30					
	MCLK	31	40	CLKOUT-	RXE CLK-	20	
	WICLK	31	39	CLKOUT+	RXE CLK+	21	
	ER6	50					
	ER7	2					
	EG6	8	38	OUT3+	RXE3-	22	
	EG7	10	37	OUT3 -	RXE3+	23	
	EB6	16	31	0013-	KAEJ	23	
	EB7	18					
	RSVD	25					

5.3 Data Input Format

Display Position of Input Data (V-H)

5.4 Back-light Interface Connection

CN21, 22, 23, 24: Module side connector : BHSR-02VS-1 (JST)

> User side connector : SM02B-BHSS-1-TB (JST) or equivalent

	Pin No	INDLT	Color	Function
Pin No	FIII INO	INPUT	Color	Function
1		НОТ	Pink & White	High voltage
2		COLD	Black & White	Ground

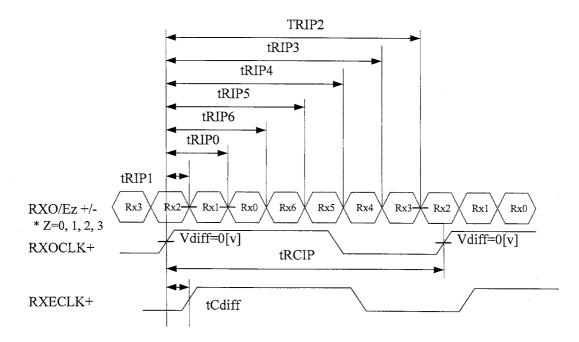
Model No.: LCT-17HT

6.0 SIGNAL TIMING SPECIFICATION

6.1 The HT17E12-200 is operated by the only DE (Data enable) mode (LVDS Transmitter Input)

	Item	Symbols	Min	Тур	Max	Unit
	Frequency	1/Tc	40	54	68	MHz
Clock	High Time	Tch	5	1	1	ns
	Low Time	Tcl	5	1	1	ns
Data	Setup Time	Tds	4	1	1	ns
Data	Hold Time	Tdh	4	1	1	ns
Data 1	Enable Setup Time	Tes	4	1	1	ns
	Frame Period	Tv	1032	1066	1536	lines
	rianie renou		13.33	16.67	1	msec
Verti	cal Display Period	Tvd	ı	1024	1	lines
One Li	ine Scanning Period	Th	672	844	1022	clocks
Horizo	ontal Display Period	Thd	640	640	640	clocks

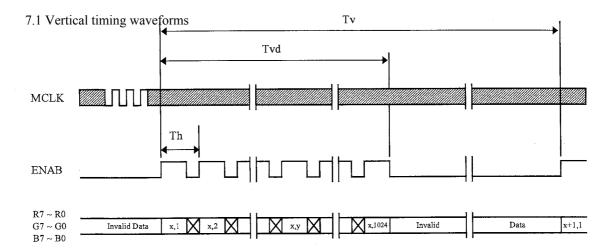
6.2 LVDS Rx interface timing parameter


The specification of the LVDS Rx interface timing parameter is shown in Table 4.

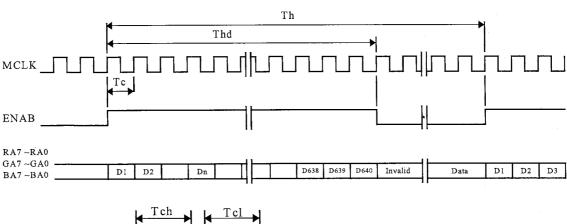
< Table 4. LVDS Rx Interface Timing Specification>

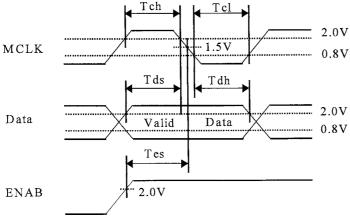
		<u> </u>				
Item	Symbol	Min	Тур	Max	Unit	Remark
CLKIN Period	tRCIP	14.7	18.5	-	nsec	
CLK Difference	tCdiff	-tRCIP*(3/7)	0	+tRCIP*(3/7)	nsec	
Input Data 0	tRIP1	-0.4	0	+0.4	nsec	
Input Data 1	tRIP0	1*tRICP/7-0.4	1*tRICP/7	1*tRICP/7+0.4	nsec	
Input Data 2	tRIP6	2*tRICP/7-0.4	2*tRICP/7	2*tRICP/7+0.4	nsec	
Input Data 3	tRIP5	3*tRICP/7-0.4	3*tRICP/7	3*tRICP/7+0.4	nsec	
Input Data 4	tRIP4	4*tRICP/7-0.4	4*tRICP/7	4*tRICP/7+0.4	nsec	
Input Data 5	tRIP3	5*tRICP/7-0.4	5*tRICP/7	5*tRICP/7+0.4	nsec	
Input Data 6	tRIP2	6*tRICP/7-0.4	6*tRICP/7	6*tRICP/7+0.4	nsec	

Model No.: LCT-17HT



* Vdiff = (RXO/Ez+)-(RXO/Ez-),, (RXO/ECLK+)-(RXO/ECLK-)


Model No.: LCT-17HT

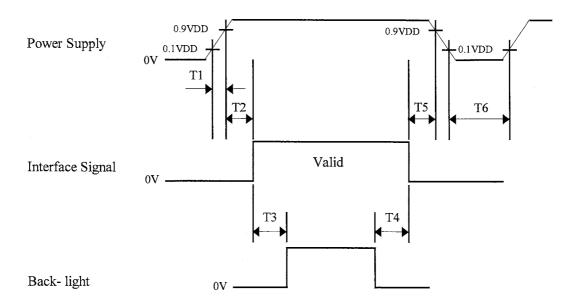


7.0 SIGNAL TIMING WAVEFORMS OF INTERFACE SIGNAL

7.2 Horizontal Timing Waveforms

Model No.: LCT-17HT

8.0 INPUT SIGNAL, BASIC DISPLAY COLORS & GRAY SCALE OF COLOR


Colors &	r Gray	. G1 17	·, .	D 1 X 1.	Red		1.77.1		OL		<u> </u>			n data		01					Rlue	- data				
Scale	x Gray	D.7	D.	D.5	1		R2	D 1	DΛ	G7									B1ue data B7 B6 B5 B4 B3 B2 B1 B0							
-	Black	R7 0	R6 0	R5	R4 0	R3 0	0	R1	R0 0	0	G6 0	G5 0	G4 0	G3 0	G2 0	G1 0	G0 0	0	0	0	0	0	0	0	0	
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
Basic	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	A	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Gray	Darker	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Scale	A				1	1								1								1				
Of Red	▼		1	1	1	,	1		1			1			1					1			1			
	Brighter ▼	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Gray	▲ Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	
Scale	Darker ▲	-			1	`			Ů		Ü			<u> </u>		1	Ů		Ů	Ů		<u> </u>		Ů		
Of	▼				1	ļ				 							↓									
Green	Brighter	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	
	▼	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
Gray	Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
Scale	A				1									1								1				
Of Blue	▼ Brighter	0			1	,		0	_	0	0		0	↓	Ι ,	0	0		1		1	↓ 	1	0	1	
Blue	▼	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Gray	A	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	
Scale	Darker	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	
Of	A				1					<u>†</u>											↑					
White	▼					ļ				<u></u>						↓										
&	Brighter	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	
Black	▼	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	

Model No.: LCT-17HT

9.0 POWER SEQUENCE

To prevent a latch-up or DC operation of the LCD module, the power on/off sequence should be as shown in below.

- $> 0 < T1 \le 10 \text{ ms}$
- \triangleright 20ms < T2 \leq 50 ms
- \gt 500 ms \leq T3
- \gt 100 ms \leq T4
- > 0 < T5 \leq 50 ms
- \triangleright 1 sec ≤ T6

Notes:

- 1. When the power supply VDD is 0V, Keep the level of input signals on the low or keep high impedance.
- 2. Do not keep the interface signal high impedance when power is on.
- 3. Back Light must be turn on after power for logic and interface signal are valid.

Model No.: LCT-17HT

10.0 MECHANICAL CHARACTERSTICS

10.1 Dimensional Requirement

FIGURE 6 shown in appendix shows mechanical outlines for the model HT17E12-200. Other parameter are shown in Table 5.

<Table 5. Dimensional Parameter>

Parameter	Specification	Unit
Dimensional outline		
Horizontal	358.5 ± 0.5	
Vertical	296.5 ± 0.5	Mm
Thickness	17.0 ± 0.5	
Weight	1900 max	Gram
Active area	337.92 (h) x 270.336 (v)	Mm
Pixel pitch	0.264 (h) x 0.264 (v)	Mm
Number of pixels	$1280 \text{ (h)} \times 1024 \text{ (v)} (1 \text{ pixel} = R + G + B \text{ dot})$	Pixels
Back-light	Top/bottom edge 4-CCFL type	

10.2 Mounting

See FIGURE 5 shown in appendix

10.3 Anti-Glare and Polarizer Hardness.

The surface of the LCD has an anti-glare coating to minimize reflection and a coating to reduce scratching.

10.4 Light Leakage

There shall not be visible light from the back-lighting system around the edges of the screen as seen from a distance 50[cm] from the screen with an overhead light level of 350[lux].

The manufacture shall furnish limit samples of the panel showing the lightest leakage acceptable.

Model No.: LCT-17HT

11.0 RELIABILITY TEST

The Reliability test items and its conditions are shown in below.

<Table 6. Reliability Test Parameter>

No	Test Items	Conditions			
1	High temperature storage test	$Ta = 60^{\circ}C, 240^{\circ}$) hrs		
2	Low temperature storage test	$Ta = -20^{\circ}C$, 240 hrs			
3	High temperature & high humidity operation test	Ta = 50°C, 80 %RH, 240 hrs			
4	High temperature operation test	$Ta = 50^{\circ}C$, 240 hrs			
5	Low temperature operation test	$Ta = 0^{\circ}C$, 240 hrs			
6	Thermal shock	Ta = -20° C \leftrightarrow 60°C (30 min), 100 cycle			
		Frequency	: 10 ~ 300 Hz, Sweep rate 30min		
7	Vibration test (non-operating)	Gravity/AMP	: 1.5G		
		Period	: ±X, ±Y, ±Z 30min		
8	Shock test (non-operating)	Gravity	: 70G		
		Pulse width	: 11ms, sine wave		
			± X, ± Y, ± Z Once for each direction		
0	Electrostatic discharge test	Air	: 150 pF, 330Ω, 15KV		
9	Electrostatic discharge test	Contact	: 150 pF, 330Ω, 8KV		

Model No.: LCT-17HT Version: 1.0

12.0 HANDLING & CAUTIONS

12.1 Cautions when taking out the module

➤ Pick the pouch only, when taking out module from a shipping package.

12.2 Cautions for handling the module

- As the electrostatic discharges may break the LCD module, handle the LCD module with care. Peel a protection sheet off from the LCD panel surface as slowly as possible.
- As the LCD panel and back-light element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.
- As the surface of the polarizer is very soft and easily scratched, use a soft dry-cloth without chemicals for cleaning.
- > Do not pull the interface connector in or out while the LCD module is operating.
- > Put the module display side down on a flat horizontal plane.
- ➤ Handle connectors and cables with care.

12.3 Cautions for the operation

- ➤ When the module is operating, do not lose LVDS signals. If any one of these signals were lost, the LCD panel would be damaged.
- Obey the supply voltage sequence. If the wrong sequences were applied, the module would be damaged.

12.4 Cautions for the atmosphere

- Dewdrop atmosphere should be avoided.
- > Do not store and/or operate the LCD module in a high temperature and/or humidity atmosphere. Storage in an electro-conductive polymer-packing pouch and under relatively low temperature atmosphere is recommended.

12.5 Cautions for the module characteristics

- > Do not apply fixed pattern data signal to the LCD module at aging time.
- > Applying fixed pattern for a long time may cause image sticking.

12.6 Other cautions

- ➤ Do not disassemble and/or re-assemble LCD module.
- > Do not re-adjust variable resistor or switch etc.
- ➤ When returning the module for repair or etc, please pack the module not to be broken. We recommend on using the original shipping packages.

14.0 APPENDIX

Figure 1. Measurement Set Up

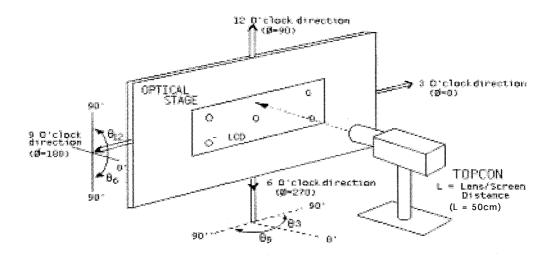
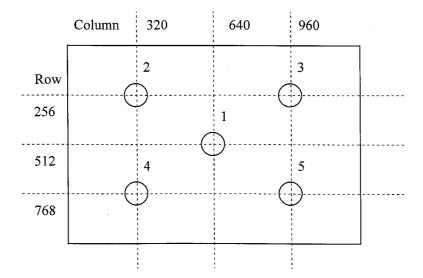



Figure 2. Average Luminance Measurement Locations & Uniformity Measurement Locations.

Model No.: LCT-17HT

Figure 3. Response Time Testing

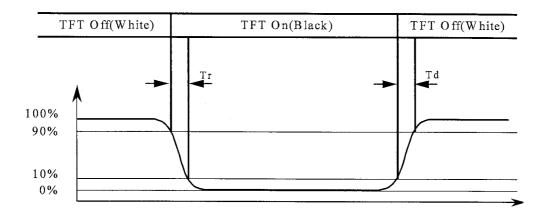
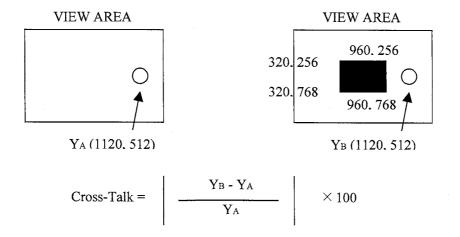
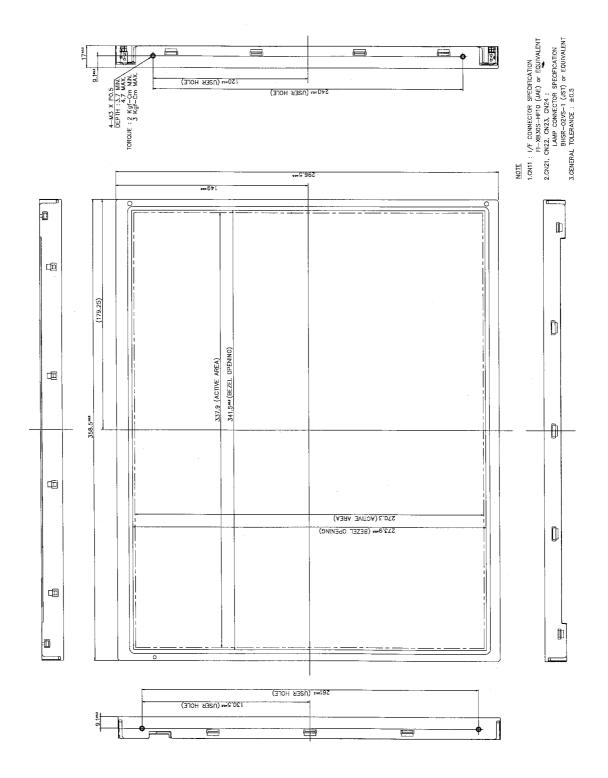



Figure 4. Cross Modulation Test Description

Where:

 Y_A = Initial luminance of measured area (cd/m²)


 Y_B = Subsequent luminance of measured area (cd/m²)

The location measured will be exactly the same in both patterns.

Model No.: LCT-17HT

Figure 5. TFT-LCD Module Outline Dimensions (Front View)

Model No.: LCT-17HT

0

(© ф 0 (0) 101,35*1 **(3)** CN21

Figure 6. TFT-LCD Module Outline Dimensions (Rear view)

¥ | |

₩ 🕀 🍪

0

Model No.: LCT-17HT

©

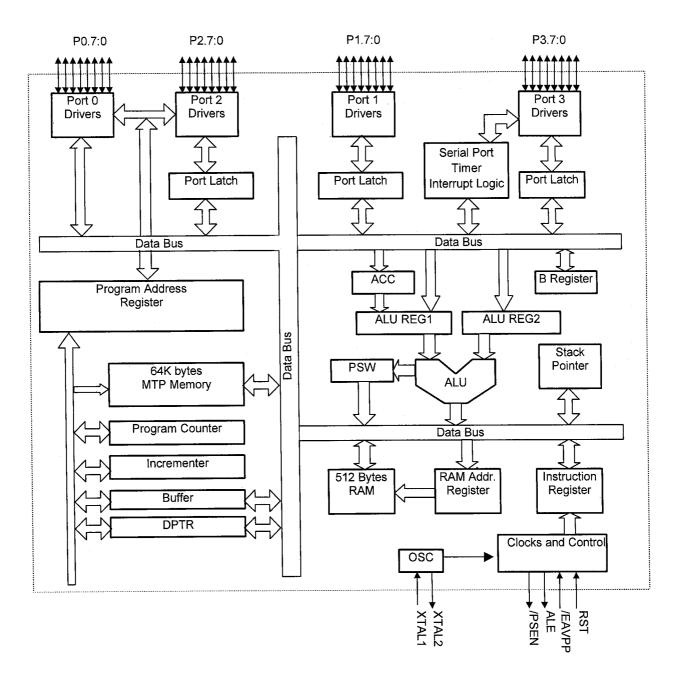
8 BIT MTP MICROCONTROLLER

1.0 FEATURES

- > 8051 instruction set compatible 8-bit microcontroller
- ➤ 8051/8052 compatible pinout
- \triangleright Complete static design, wide range of operation frequency from 1 ~ 40 MHz
- > Large on-chip memory
 - 64K bytes built-in Multiple Times Programmable ROM (MTP-ROM) program memory
 - 512 bytes on-chip SRAM, expandable external 64K bytes address space
- Dual Data Pointer
- Four 8-bit bi-directional I/O ports
- ➤ 6 interrupts including 2 external sources
- ➤ One full-duplex serial UART ports compatible with standard 8052
- ➤ Three 16 bit timer/counters
- > On chip oscillator for crystal
- Software Power-Down mode, supports Idle mode and Power Down mode for less power consumption
- > ROM Code Protection
- ➤ 4.5V~5.5V operation voltage, 12V programming voltage
- > 44-pin PLCC or QFP package

1.1 General Description

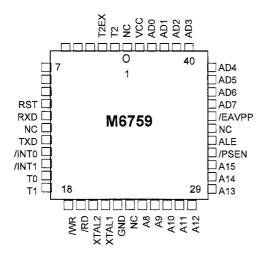
The M6759 is an 8032/8052 instruction compatible 8-bit microcontroller with MTP Flash ROM for firmware updating. By combining a versatile 8-bit CPU with MTP-Flash, this device provides whole microcontroller system on one chip and still remains the feasibility for general control systems in a variety of applications. Furthermore, user-defined security registers can protect the firmware after the code is ready.

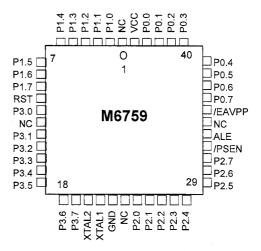

The M6759 contains the following:

- a. A non-volatile 64K bytes Multiple Times Programmable ROMprogram memory.
- b. A volatile 512 bytes read/write data memory
- c. Four 8-bit I/O ports, two 16-bit timer/event counters (identical to the timers of the 80C51)
- d. A 16-bit timer (identical to the Timer 2 of the 8052).
- e. A multi-source two-priority-level nested interrupt structure.
- f. One serial interface (UART) and
- g. An on-chip oscillator.

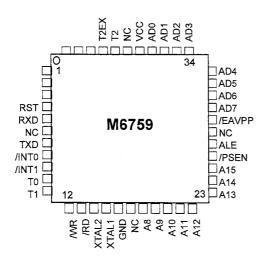
Model No.: LCT-17HT

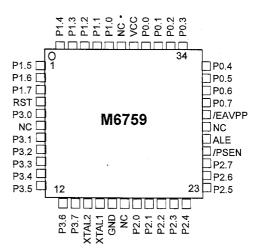
1.2 Block Diagram


Model No.: LCT-17HT



2.0 PIN Description


2.1 Pinout Diagram


44-pin PLCC Package

44-pin QFP Package

2.2 Pin Description Table

Pin assignments shown below are listed based on 44-pin PLCC package. And if not additionally specified, further pin number reference throughout this datasheet is, by default, referred to 44-pin PLCC package. As for the QFP package, the pin number assignment should be shifted accordingly, as comparatively shown in Section 2.1 Pinout Diagram.

Pin Name	No. (PLCC)	Туре	Description		
VDD	44	IN	Power supply for internal operation, 5V input.		
GND	22	IN	Ground.		
			Port 0 is 8 bits bi-directional I/O port with internal pull high.		
P0.7-P0.0 AD7-0	36,37,38,39, 40,41,42, 43	I/O	Multiplexed address/data bus. During the time when ALE is high, the LSB of a memory address is presented. When ALE falls, the port transitions to a bi-directional data bus. This bus is used to read external ROM and read/write external RAM memory or peripherals.		
RST	10	IN	Reset signal of internal circuit, it must be kept 4 clocks to ensure being recognized by internal circuit. This signal will not affect internal SRAM.		
XTAL1	21	IN	Crystal In, can be used as external clock input.		
XTAL2	20	OUT	Crystal out, feedback of XTAL1.		
/PSEN	32	OUT	Program Store Enable Output, commonly connected to external ROM memory as a chip enable during fetching and MOVC operation. /PSEN goes high during a reset condition.		
ALE	33	OUT	Address Latch Enable, used to latch external LSB 8 bit address bus from multiplexed address/data bus, commonly connect to the latch enable of 373 family. This signal will be forced high when the device is in a reset condition.		
P1.7-P1.0 T2EX (P1.1)	9,8,7,6,5,4,3	I/O IN	Port 1 is 8 bits bi-directional I/O port with internal pull high. All pins have an alternate function shown as below. External timer/counter 2 trigger.		
T2 (P1.0)	,2	IN	External timer/counter 2.		
		I/O	Port 2 is 8 bits bi-directional I/O port with internal pull high. The alternate function is MSB 8 bit address bus		
P2.7-P2.0 A15-A8	31,30,29,28, 27,26,25, 24	OUT	This bus emits the high-order address byte during fetches from external Program Memory or during accesses to external Data Memory that use 16-bit addresses (MOVX @ DPTR). During accesses to external Data Memory that use 8-bit addresses (MOVX @ Ri), Port 2 emits the contents of the P2 Special Function Register.		

Model No.: LCT-17HT

P3.7-P3.0		I/O	Port 3 is an 8-bit bi-directional I/O port with internal pull high. The		
/RD (P3.7)	D (P3.7)		reset condition of this port is with all bits at a logic 1.		
/WR (P3.6)	19,18,17,16, 15,14,13, 11		Port 3 also have alternate function list below		
T1 (P3.5)		OUT	External data memory read strobe.		
T0 (P3.4)		OUT	External data memory write strobe.		
/INT1		IN	External timer/counter 1.		
(P3.3)		IN	External timer/counter 0.		
/INT0		IN	External interrupt 1 (Negative Edge Detect).		
(P3.2)		IN	External interrupt 0 (Negative Edge Detect).		
TXD (P3.1)		OUT	Serial port output.		
RXD (P3.0)		IN	Serial port input.		
/EAVPP	35	IN	The pin must be externally held low to enable the device to fetch code		
			from external program memory. If /EAVPP is held high, the device		
			executes from internal program memory. /EAVPP is internal latched		
			on reset. This pin also receives the 12V programming voltage (V_{PP})		
			during FLASH programming.		
NC	1,12,23,34	NC	These pins should not be connected for any purpose		

3.0 FUNCTION DESCRIPTION

3.1 Data Space Addressing

The M6759 has internal data memory that is mapped into four separate segments: the lower 128 bytes of RAM, upper 128 bytes of RAM, 128 bytes Special Function Register (SFR), and 256 bytes auxiliary RAM (ARAM).

The four segments are:

- a. The Lower 128 bytes of RAM (address 00H to 7FH) are directly and indirectly addressable.
- b. The Upper 128 bytes of RAM (address 80H to FFH) are indirectly addressable only.
- c. The Special Function Registers SFRs, (address 80H to FFH) are directly addressable only.
- d. The 256-bytes auxiliary RAM (ARAM, 0000H-00FFH) are indirectly accessed by move external instruction, MOVX.

Either direct or indirect addressing can access the lower 128 bytes. The upper 128 bytes can be accessed by indirect address only. The upper 128 bytes occupy the same address space as the SFRs. That means they have the same address, but are physically separate from SFR space.

The ARAM can be accessed by indirect addressing and MOVX instructions when ARAM_EN bit is set. This part of memory is physically located on-chip, logically occupied the first 256-bytes of external data memory if ARAM EN bit is set.

The ARAM is indirectly addressed, using the MOVX instruction in combination with any of the registers R0, R1 of the selected bank or DPTR. An access to ARAM will not affect ports P0, P3.6 (/WR) and P3.7 /RD).

If ARAM_EN is cleared, the access to external memory will be performed in the same way as standard 8051. If ARAM_EN is set and DPTR contains value lower than 0100H, the ARAM will be accessed rather than external memory, but if DPTR contains value higher than 00FFH (i.e. 0100H to FFFFH), the external memory will be accessed.

If ARAM_EN is set and P2 SFR contains 00H, the ARAM will be accessed by the MOVX @Ri, #data instruction, but if P2 SFR contains a non-zero value, the external memory will be accessed using MOVX @Ri, #data.

For example,

MOVX DPTR, #data

If ARAM_EN is set and DPTR contains 0030H, access the ARAM at address 030H rather than external memory.

If ARAM EN is set and DPTR contains 0130H, the external memory address 0130H will be accessed

Model No.: LCT-17HT

For example:

MOVX

@R0, #data

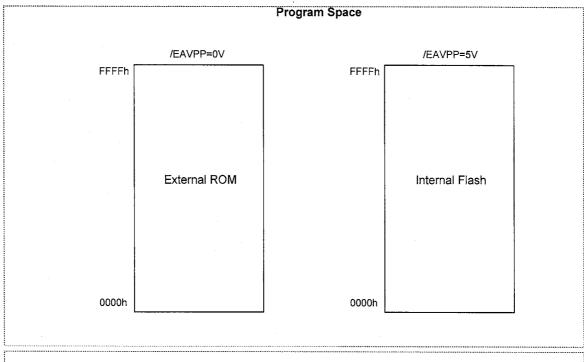
If ARAM_EN is set, P2 SFR contains 00H, and R0 contains 30H, an access to the ARAM at address 30H will be performed.

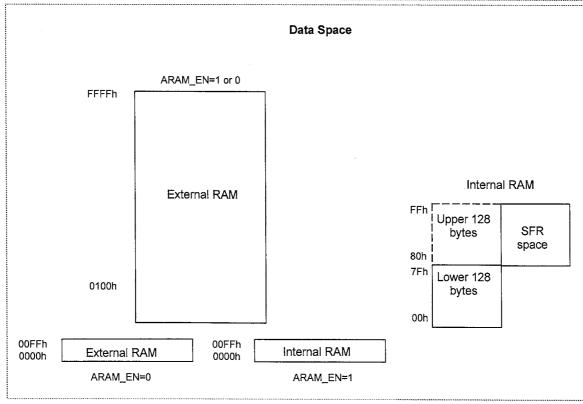
If ARAM_EN is set, P2 SFR contains 01H, and R0 contains 30H, an access to the external memory address 0130H will be performed if P2 is connected to the high byte address bus of external RAM.

3.2 Dual Data Pointer

Data memory block moves can be accelerated using the Dual Data Pointer (DPTR). The standard 8051 DPTR is a 16-bit value that is used to address off-chip data RAM or peripherals. In the M6759, the standard 16-bit data pointer is called DPTR0 and is located at SFR address 82H and 83H. These are the standard locations. The new DPTR is located at SFR 84H and 85H and is called DPTR1. The new DPTR Select bit (DPS) chooses the active pointer and is located at the LSB of the SFR location 86H. No other bits in register 86H have any effect and are set to 0. The user switches between data pointer by toggling the LSB of register 86H. The increment (INC) instruction is the fastest way to accomplish this. All DPTR-related instructions use the currently selected DPTR for any activity.

3.3 Low EMI Mode


In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purpose. Note, however, that one ALE pulse is skipped during each access to external Data Memory.


If desired, setting bit 0 of SFR location 8EH can disable ALE operation. With the bit set, ALE is active only during a MOVX instruction. Otherwise the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the micro-controller is in external execution mode.

Model No.: LCT-17HT

Memory Map

Model No.: LCT-17HT

3.4 Idle Mode

In Idle mode, CPU put itself into sleep while all the on-chip peripherals remain active. The instruction that sets PCON.0 is the last instruction executed in the normal operating mode before Idle mode is activated. The content of RAM and special functions register remain unchanged, and the status of CPU (includes Stack Point, Program Counter, Program Status Word and Accumulator) is preserved in this mode.

There are two ways to terminate Idle mode:

- Activation of any enabled interrupt will cause IDLE (PCON.0) to be cleared by hardware terminating Idle mode. The interrupt will be serviced, and returned by instruction RETI. The next instruction to be executed is the one which follows the instruction that wrote a logic 1 to PCON.0. The flag bits GF0 (PCON.2) and GF3 (PCON.6) can be used to determine whether the interrupt was received during normal execution or during the Idle mode. When Idle mode is terminated by an interrupt, the service routine can examine the status of the flag bits.
- > The second way of terminating the Idle mode is with an external hardware reset.

3.5 Power Down Mode

Setting PCON.1 (PD) can force CPU enter Power Down mode. In this mode, on-chip oscillator is stopped to save most of power. All functions are stopped due to the clock frozen, but the contents of RAM and special functions register are held.

To terminate Power Down mode, the only way is hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart stably.

3.6 Reset

The RST is the reset input, which is the input to a Schmitt Trigger. A reset is accomplished by holding the RST pin high for at least four oscillator periods while the oscillator is running. The CPU responds by generating an internal reset, with the timing shown in Reset Timing. The external reset signal is synchronous to the internal clock. The port pins will maintain high by internal pull-ups for 205 oscillator periods after RST pin goes low. While the RST pin is high, ALE and /PSEN are weakly pulled high. After RST is pulled low, it will take about 205 oscillator periods for ALE and PSEN to start clocking. For this reason, other devices can not be synchronized to the internal timings of the m6759. Driving the ALE and /PSEN pins to 0 while reset is active could cause the device to go into an indeterminate state.

The internal reset algorithm writes 0s to all the SFRs except the port latches, the Stack Pointer, and SBUF. The port latches are initialized to FFH, the Stack Pointer to 07H, and SBUF is indeterminate. The internal RAM is not affected by reset. On power up the RAM content is indeterminate.

Model No.: LCT-17HT

3.7 Interrupt Processing

When an enabled interrupt occurs, the CPU vectors to the address of the interrupt service routine (ISR) associated with that interrupt, as listed in Table 11. The CPU executes the ISR to completion unless another interrupt of higher priority occurs. Each ISR ends with a RETI (return from interrupt) instruction. After executing the RETI, the CPU returns to the next instruction that would have been executed if the interrupt had not occurred.

An ISR can only be interrupted by a higher priority interrupt. That is, an ISR for a low-priority level interrupt can only be interrupted by high-priority level interrupt. An ISR for a high-priority level cannot be interrupted by any other interrupt.

M6759 always completes the instruction in progress before servicing an interrupt. If the instruction in progress is RETI, or a write access to any of the IP or IE SFRs, M6759 completes one additional instruction before servicing the interrupt.

3.8 Interrupt Masking

The EA bit in the IE SFR (IE.7) is a global enable for all interrupts. When EA=1, each interrupt is enabled/masked by its individual enable bit. When EA=0, all interrupts are masked.

3.9 Interrupt Priorities

There are two stages of interrupt priority assignment, interrupt level and natural priority. The interrupt level (high or low) takes precedence over natural priority. All interrupts can be assigned to be high or low priority. In addition to an assigned priority level, each interrupt also has a natural priority, as listed in Table 3-2. Simultaneous interrupts with the same priority level (for example, both high) are resolved according to their natural priority. For example, if /INT0 and /INT1 are both programmed as high priority, /INT0 takes precedence.

Once an interrupt is being serviced, only an interrupt of higher priority level can interrupt the service routine of the interrupt currently being serviced.

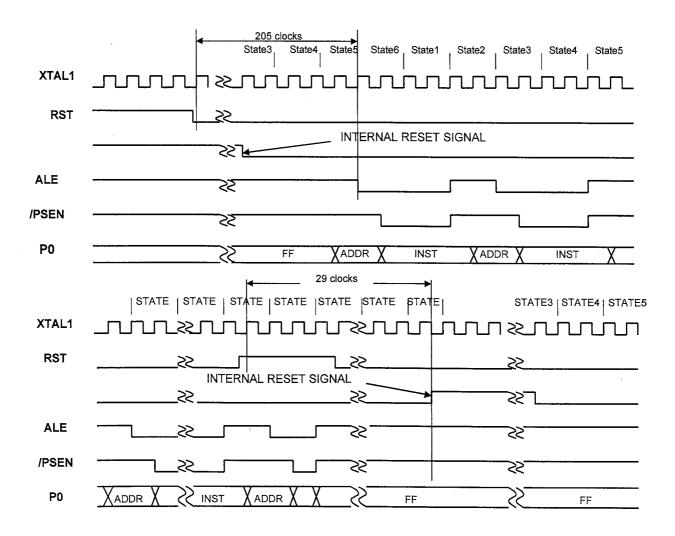

Mode	Program	ALE	/PSEN	Port0	Port1	Port2	Port3
	Memory						
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

Table 3-1. Status of the External pins During Idle and Power Down

Model No.: LCT-17HT

Reset Timing

Table 3-2. Interrupt Natural Vectors and Priorities

Interrupt	Description	Natural Priority	Interrupt Vector
/INT0	External interrupt 0	0	03H
TF0	Timer 0 interrupt	1	0BH
/INT1	External interrupt 1	2	13H
TF1	Timer 1 interrupt	3	1BH
TI or RI	Serial Port transmit or receive interrupt	4	23H
TF2	Timer 2 interrupt	5	2BH

Table 3-3. Interrupt Flag, Enables and Priority Control

Interrupt	Description	Flag	Enable	Priority Control	
/INT0	External interrupt 0	TCON.1	IE.0	IP.0	
TF0	Timer 0 interrupt	TCON.5	IE.1	IP.1	
/INT1	External interrupt 1	TCON.3	IE.2	IP.2	
TF1	Timer 1 interrupt	TCON.7	IE.3	IP.3	
TI or RI	Serial Port transmit or receive interrupt	SCON0.0	IE.5	IP.5	
HOIRI	Senai Port transmit of receive interrupt	SCON0.1		16.5	
TF2	Timer 2 interrupt	T2CON.7	IE.6	IP.6	

Model No.: LCT-17HT

4.0 SPECIAL FUNCTION REGISTERS

SFR Register Map

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Addr
P0									80H
SP									81H
DPL0									82H
DPH0									83H
DPL1									84H
DPH1									85H
DPS	0	0	0	0	0	0	0	SEL	86H
PCON	SMOD	GF4	GF3	GF2	GF1	GF0	STOP	IDLE	87H
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	88H
TMOD	GATE	C/T	M1	M0	GATE	C/T	M1	M0	89H
TL0									8AH
TL1									8BH
TH0									8CH
TH1									8DH
LEMI	0	0	0	0	0	0	0	LOWEMI	8EH
P1									90H
AUXR	ARAM_EN	GF6	GF5	*EB	*BRG1	*BRG0	*INT2I	*INT2E	97H
SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	98H
SBUF									99H
P2									A0H
IE	EA	*EX2	ET2	ES0	ET1	EX1	ET0	EX0	A8H
Р3									ВОН
IP	1	*PX2	PT2	PS0	PT1	PX1	PT0	PX0	B8H
T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	C8H
RCAP2L									CAH
RCAP2H									СВН
TL2									ССН
TH2									CDH
PSW	CY	AC	F0	RS1	RS0	OV	F1	P	D0H
ACC									Е0Н
*P4									E8H
В									F0H
*P5									F8H

All register labeled with * can be only used in 68-pin package (not available now)

Model No.: LCT-17HT

SFR Register Initial Value

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Addr
P0	1	1	1	1	1	1	1	1	80H
SP	0	0	0	0	0	1	1	1	81H
DPL0	0	0	0	0	0	0	0	0	82H
DPH0	0	0	0	0	0	0	0	0	83H
DPL1	0	0	0	0	0	0	0	0	84H
DPH1	0	0	0	0	0	0	0	0	85H
DPS	0	0	0	0	0	0	0	0	86H
PCON	0	0	0	0	0	0	0	0	87H
TCON	0	0	0	0	0	0	0	0	88H
TMOD	0	0	0	0	0	0	0	0	89H
TL0	0	0	0	0	0	0	0	0	8AH
TL1	0	0	0	0	0	0	0	0	8BH
TH0	0	0	0	0	0	0	0	0	8CH
TH1	0	0	0	0	0	0	0	0	8DH
LEMI	0	0	0	0	0	0	0	0	8EH
P1	1	1	1	1	1	1	1	1	90H
AUXR	0	0	0	0	1	1	0	0	97H
SCON	0	0	0	0	0	0	0	0	98H
SBUF	0	0	0	0	0	0	0	0	99H
P2	1	1	1	1	1	1	1	1	A0H
ΙE	0	0	0	0	0	0	0	0	A8H
P3	1	1	1	1	1	1	1	1	вон
IP	0	0	0	0	0	0	0	0	B8H
T2CON	0	0	0	0	0	0	0	0	C8H
RCAP2L	0	0	0	0	0	0	0	0	CAH
RCAP2H	0	0	0	0	0	0	0	0	СВН
TL2	0	0	0	0	0	0	0	0	CCH
TH2	0	0	0	0	0	0	0	0	CDH
PSW	0	0	0	0	0	0	0	0	D0H
ACC	0	0	0	0	0	0	0	0	E0H
P4	1	1	1	1	1	1	1	1	E8H
В	0	0	0	0	0	0	0	0	F0H
P5	1	1	1	1	1	1	1	1	F8H

Model No.: LCT-17HT

Register Definition

4.1 CPU Control and Status Register

SFR 86H: DPS register, Data Pointer Select Register

Bit	Description
7-1	0
0	SEL. The DPTR Select bit. When SEL=0, DPTR0 is the active pointer. When SEL=1, DPTR1 is the
	active pointer.

SFR 87H: PCON Register, Power Control Register

Bit	Description
7	SMOD, Double Baud Rate bit. If Timer 1 is used to generate baud rate and SMOD=1, the baud rate is
	doubled when the Serial Port is used in modes 1, 2 or 3.
6-2	GF3–GF0, General Purpose Flag bit.
1	PD, Power Down bit.
0	IDLE, Idle Mode bit.

SFR 8EH: LEMI Register, Low EMI Control Register

Bit	Description
7-1	0
0	LOWEMI, The Low EMI Setting bit. If the M6759 operate in the internal access mode, ALE is active only
	during a MOVX instruction when LOWEMI=1.

SFR 97H: AUXR Register, Auxiliary Register

Bit	Description
7	ARAM_EN, Access Internal Auxiliary RAM Enable bit. When ARMA_EN=0, the access of external RAM
	will be performed by MOVX. When ARAM_EN=1, access internal auxiliary RAM rather than external
	RAM.
6-5	GF6-GF5. General Purpose Flag bit.
4-0	Reserved.

Model No.: LCT-17HT

SFR D0H: PSW Register, Program Control Register

Bit	Description								
7	CY, Carry Flag. Set to 1 when the last arithmetic operation results in a carry into (during addition)								
	or borrow from (during subtraction) the high order nibble. Otherwise, this bit is cleared to 0 by all								
	arithmetic operations.								
6	AC, Auxiliary Carry Flag. Set to 1 when the last arithmetic operation results in a carry into (during								
	addition) or borrow from (during subtraction) the high order nibble. Otherwise, this bit cleared to 0								
	by all arithmetic operations.								
5	F0, User Flag 0, user addressable. Generates purpose flag for software control.								
4-3	RS1-0, Register Bank Select								
	RS1 RS0 Bank Selected								
	0 0 Register Bank 0, address 00h-07h								
	0 1 Register Bank 1, address 08h-0Fh								
	1 0 Register Bank 2, address 10h-17h								
	1 1 Register Bank 3, address 17h-1Fh								
2	OV, Overflow Flag. Set to 1 when the last arithmetic operation resulted in a carry (addition), borrow								
	(subtraction), or overflow (multiply or divide). Otherwise, this bit is cleared to 0 by all arithmetic								
	operations.								
1	GF, User Flag 1, user addressable. Generator purpose flag for software control.								
0	F1, Parity Flag. Set to 1 when the modulo-2 sum of the 8 bits in the accumulator is 1 (odd parity),								
	clear to 0 on even parity.								

Interrupt Registers

SFR A8H: IE Register

	Aoii. IL Register
Bit	Description
7	EA, Global Interrupt Enable. Controls masking of all interrupts except power fail interrupt. EA=0
	disable all interrupts (EA overrides individual interrupt enable bits). When EA=1, each interrupt is
	enabled or masked by its individual enable bit.
6	Reserved.
5	ET2, Enable External Timer 2. ET2=0 disables Timer 2 interrupt (TF2). ET2=1 enables interrupts
	generated by TF2 flag.
4	ES0, Enable Serial Port 0 Interrupt. ES0=0 disables Serial Port 0 interrupts (TI_0 and RI_0). ES0=1
	enables interrupts generated by the TI_0 or RI_0 flag.
3	ET1, Enable External Timer 1. ET1=0 disables Timer 1 interrupt (TF1). ET1=1 enables interrupts
	generated by TF1 flag.
2	EX1, Enable External Interrupt 1. EX1=0 disables external interrupt 1 (/INT1). EX1=1 enables
	interrupts generated by /INT1.
1	ET0, Enable External Timer 0. ET0=0 disables Timer 0 interrupt (TF0). ET0=1 enables interrupts
	generated by TF0 flag.
0	EX0, Enable External Interrupt 0. EX0=0 disables external interrupt 0 (/INT0). EX0=1 enables
	interrupts generated by /INT0.

Model No.: LCT-17HT Version: 1.0

SFR B8H: IP Register

Bit	Description
7	Reserved, read as 1.
6	Reserved.
5	PT2, Timer 2 Interrupt Priority Control. PT2=0 sets Timer 2 interrupt (TF2) to low priority. PT2=1 sets
	Timer 2 interrupt to high priority.
4	PS0, Serial Port 0 Interrupt Priority Control. PS0=0 sets Serial Port 0 interrupts (TI_0 and RI_0) to
	low priority. PS0=1 sets Serial Port 0 to high priority.
3	PT1, Timer 1 Interrupt Priority Control. PT1=0 sets Timer 1 interrupt (TF1) to low priority. PT1=1 sets
	Timer 1 interrupt to high priority.
2	PX1, External Interrupt 1 Priority Control. PX1=0 sets external interrupt 1 (/INT1) to low priority.
	PX1=1 sets external interrupt 1 to high priority.
1	PT0, Timer 0 Interrupt Priority Control. PT0=0 sets Timer 0 interrupt (TF0) to low priority. PT0=1 sets
	Timer 0 interrupt to high priority.
0	PX0, External Interrupt 0 Priority Control. PX0=0 sets external interrupt 0 (/INT0) to low priority.
	PX0=1 sets external interrupt 0 to high priority.

4.2 Peripheral Device Registers

SFR 88H: TCON Register

Bit	Description
7	TF1, Timer 1 Overflow Flag. Set to 1 when Time 1 count overflows and clears when the processor
	vectors to the interrupt service routine.
6	TR1, Timer 1 Run Control. Set to 1 to enable counting on Timer 1.
5	TF0, Timer 0 Overflow Flag. Set to 1 when Time 0 count overflows and clears when the processor
	vectors to the interrupt service routine.
4	TR0, Timer 0 Run Control. Set to 1 to enable counting on Timer 0.
3	IE1, Interrupt 1 Edge Detect. If external interrupt 1 is configured to be edge sensitive (IT1=1), IE1 is
	set by hardware when a negative edge is detected on the /INT1 and is automatically cleared when
	the CPU vectors to the corresponding interrupt service routine. In this case, IE1 can also be cleared
	by software. If external interrupt 1 is configured to be level-sensitive (IT1=0), IE1 is set when /INT1
	is 0 and cleared when /INT1 is 1. In level-sensitive mode, software can not write to IE1.
2	IT1, Interrupt 1 Type Selector, /INT1 is detected on falling edge when IT1=1; /INT1 is detected as a
	low level when IT1=0.
1	IE0, Interrupt 0 Edge Detect. If external interrupt 0 is configured to be edge sensitive (IT0=1), IE0 is
	set by hardware when a negative edge is detected on the /INT0 and is automatically cleared when
	the CPU vectors to the corresponding interrupt service routine. In this case, IE0 can also be cleared
	by software. If external interrupt 0 is configured to be level-sensitive (IT0=0), IE0 is set when /INT0
	is 0 and cleared when /INT0 is 1. In level-sensitive mode, software can not write to IE0.
0	ITO, Interrupt 0 Type Selector, /INT0 is detected on falling edge when IT0=1; /INT0 is detected as a
	low level when IT0=0.

Model No.: LCT-17HT Version: 1.0

SFR 89H: TMOD Register

Bit	Descri	ption								
	GATE.	Timer 1 (Gate Control, when GATE=1, Timer 1 will clock when /INT1 and TR1							
7	(TCON.6)= 1. When GATE=0, Timer 1 will clock only when TR1=1, regardless of the state of									
	/INT1									
6	C/T, C	ounter/Tin	ner Selector, when C/T=0, Timer 1 is clocked by clk/12, depending on the state of							
Ů	T1M (0	CKCON.4). When C/T=1, Timer 1 is clocked by T1 pin.							
	M1-0,	Timer 1 m	ode select bits							
	M1	M0	Mode							
5-4	0	0	Mode 0: 13 bit counter							
3 4	0	1	Mode 1: 16 bit counter							
	1	0	Mode 2: 8 bit counter with auto-reload							
	1	1	Mode 3: off							
	GATE.	GATE. Timer 0 Gate Control, when GATE=1, Timer 0 will clock when /INT0 and TR0								
3	(TCON	(TCON.4)= 1. When GATE=0, Timer 0 will clock only when TR0=1, regardless of the state of								
	/INT0.									
2	C/T, C	ounter/Tim	ner Selector, when C/T=0, Timer 0 is clocked by clk/12, depending on the state of							
	T0M (0	CKCON.3). When C/T=1, Timer 0 is clocked by T0 pin.							
	M1-0,	Timer 0 m	ode select bits							
	M1	M 0	Mode							
1-0	0	0	Mode 0: 13 bit counter							
	0	1	Mode 1: 16 bit counter							
	1	0	Mode 2: 8 bit counter with auto-reload							
	1	1	Mode 3: Two 8 bit counter							

Model No.: LCT-17HT

SFR C8H: T2CON Register

	Con. 12-Con register
Bit	Description
7	TF2, Timer 2 Overflow Flag. Hardware will set TF2 when the Timer 2 overflow from FFFFH, TF2
	must be cleared to 0 by software. TF2 will only be set to 1 if RCLK and TCLK are both cleared to 0.
	Writing a 1 to TF2 forces a Timer 2 interrupt if enabled.
6	EXF2, Timer 2 External Flag. Hardware will set EXF2 when a reload or capture is caused by a
	high-to-low transition on the T2EX pin, and EXEN2 is set. EXF2 must be cleared to 0 by software.
	Writing a 1 to EXF2 forces a Timer 2 interrupt if enable.
5	RCLK, Receive Clock Flag. Determine whether Timer 1 or Timer 2 is used for Serial Port 0 timing
	of receive data in serial mode 1 or 3. RCLK=1 selects Timer 2 overflow as the receive clock.
	RCLK=0 selects Timer 1 overflow as the receive clock.
4	TCLK, Transmit Clock Flag. Determine whether Timer 1 or Timer 2 is used for Serial Port 0 timing
	of transmit data in serial mode 1 or 3. RCLK=1 selects Timer 2 overflow as the transmit clock.
	RCLK=0 selects Timer 1 overflow as the transmit clock.
3	EXEN2, Timer 2 External Enable. EXEN2=1 enables capture or reload to occur as a result of
	high-to-low transition on T2EX, if Timer 2 is not generating baud rates for the serial port.
	EXEN2=0 causes Timer 2 to ignore all external events at T2EX.
2	TR2, Timer 2 Run Control Flag. TR2=1 starts Timer 2, TR2=0 stops Timer 2.
1	C/T2 Counter/Timer Selector. C/T2=0 selects a timer function for Timer 2. C/T2=1 selects a
	counter of falling transitions on the T2 pin. When used as a timer, Timer 2 run at 4 clocks per tick or
	12 clocks per tick as programmed by CKCON.5, in all modes except baud rate generator mode.
	When used in baud rate generator mode, Timer 2 runs at 2 clocks per tick, independent of state of
	CKCON.5
0	CP/RL2, Capture/Reload Flag. When CP/RL2=1, Timer 2 captures occur on high-to-low
	transitions of T2EX, if EXEN2=1. When CP/RL2=0, auto-reloads occur when Timer2 overflows or
	when high-to-low transitions occur on T2EX, if EXEN2=1. If either RCLK or TCLK is set to 1,
	CP/RL2 will not function and Timer 2 will operate in auto-reload mode following each overflow.

SFR 98H: SCON Register

Bit	Description								
	SM1, SM0, Serial Port 0 Mode Select bits								
	SM1	SM0	Mode						
7-6	0	0	0						
	0	1	1						
	1	0	2						
	1	1	3						

Model No.: LCT-17HT

Bit	Description								
5	SM2, Multiprocessor Communication Enable. In modes 2 and 3, this bit enables the multiprocessor								
	communication feature. If SM2=1 in mode 2 or 3, the RI will not be activated if the received 9 th to								
	0. If SM2=1 is in mode 1, then RI will only be activated if a valid stop is received. In mode 0, SM2								
	establishes the baud rate: when SM2=0, the baud rate is clk/12; when SM2=1, the baud rate is								
	clk/4.								
4	REN, Receive Enable. When REN=1, reception is enabled.								
3	TB8, Defined the state of the 9 th data bit transmitted in modes 2 and 3.								
2	RB8, In modes 2 and 3, RB8 indicates the state of the 9 th bit received. In mode 1, RB8 indicates the								
	state of received stop bit. In mode 0, RB8 is not used.								
1	TI, Transmit Interrupt Flag. Indicates that the transmit data word has been shifted out. In mode 0, TI								
	is set at the end of the 8 th data bit. In all other modes, TI is set when the stop bit is placed on the								
	TXD pin, TI must be cleared by software.								
0	RI, Receive Interrupt Flag. Indicates that serial data word has been received. In mode 0, RI is set at								
	the end of the 8 th data bit. In mode 1, RI is set after the last sample of the incoming stop bit, subject								
	to the state of SM2. In modes 2 and 3, RI is set at the end of the last sample of RB8, RI must be								
	cleared by the software.								

5.0 Peripheral Device

5.1 Timer Operation

The M6759 has three 16-bit timer/counter registers, all three can be configured to operate either as timers or event counters.

When operating as timer function, the register increases by every machine cycle, each machine cycle consists of 12 oscillator periods. Thus, one can view the register as a counter with count rate 1/12 of oscillator frequency.

When operating as counter function, the register increases according to a 1-to-0 transition at corresponding external input pin, which can be T0, T1 or T2.

In this function, the external input pin is sampled at every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the counter increases by 1. Since it takes two machine cycles to determine a transition, the count rate is maximum 1/24 oscillator frequency. It is important that input signal should be held a given level at least one machine cycle to ensure the given level to be sampled. In addition to the timer/counter selection, Timer 0 and Timer 1 have four operating modes, Timer 2 has three operating modes. They are described below:

Model No.: LCT-17HT

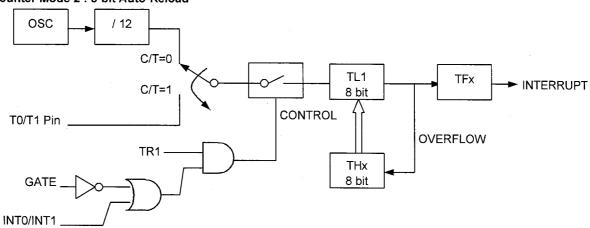
Timer0/Timer1 Mode Control

M1	M0	Operating Mode
0	0	8 bit Timer/Counter, "THx" with "TLx" as 5 bit prescaler
0	1	16 bit Timer/Counter, "THx" and "TLx" are cascadent
1	0	8 bit auto-reload timer/counter, each time "TLx" overflows, store value in
'		"THx" into "TLx".
		Timer 0 : TL0 and TH0 indicate two 8-bit counters controlled by
1	1	Timer0 and Timer1 control bit
		Timer 1 : off

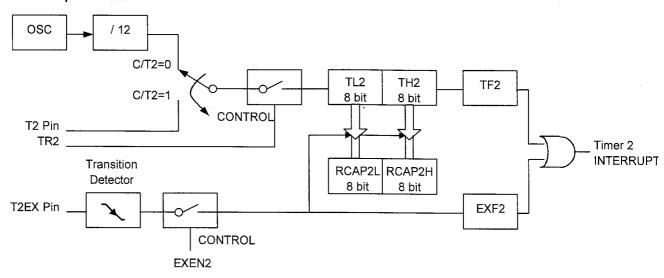
Timer2 Mode Control

RCLK + TCLK	CP/RL2	TR2	Operation Mode
0	0	1	16-bit auto-reload
0	1	1	16-bit capture
1	Х	1	Baud rate generator
Х	Х	0	Non-active

Model No.: LCT-17HT

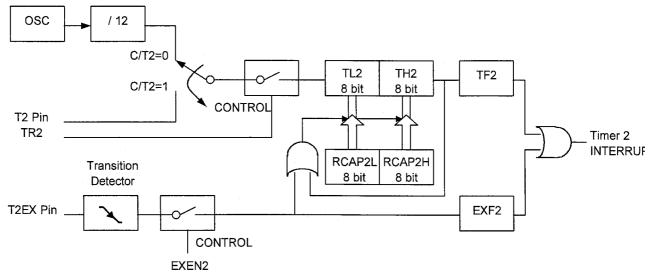


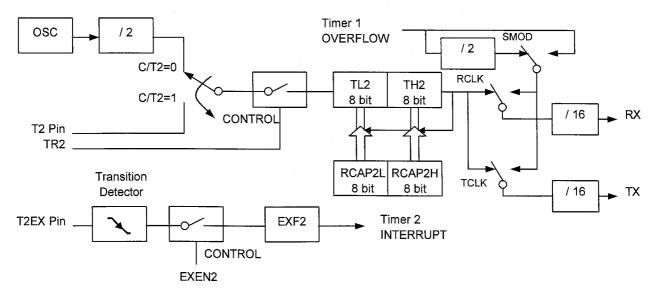
GATE_


INTO/INT1

Timer/Counter Mode 0: 13 bit Counter OSC / 12 C/T=0 C/T=1 TLX 5 bit 8 bit TFX INTERRUPT CONTROL

Timer/Counter Mode 2: 8-bit Auto-Reload


Timer 2 in Capture Mode


Model No.: LCT-17HT

Timer 2 in Auto-reload Mode

Timer 2 In Baud Rate Generator Mode

Model No.: LCT-17HT

Timer 2 is a 16-bit Timer/Counter. It can be selected as a timer or an event counter by register T2CON. It has three operating modes: "Capture", "Auto-reload" and "Baud rate generator".

In capture mode, there are two options which are selected by bit EXEN2 in T2CON. If EXEN2 is 0, then Timer2 is a 16-bit timer/counter which sets bit TF2 (timer 2 overflow flag) upon overflowing, TF2 can generate an interrupt when Timer 2 interrupt is enabled. If EXEN2 is 1, above operation is still activated, with added feature that a 1-to-0 transition of external input pin T2EX can cause the content of TL2 and TH2 to be captured into RCAP2L and RCAP2H. In addition, the transition of T2EX set the bit EXF2 (which is in the T2CON register), and EXF2 can generate an interrupt.

In Auto-reload mode, there are two options that can be selected by bit EXEN2 in T2CON. If EXEN2 is 0, when Timer 2 overflows it sets TF2 and Timer 2 load the 16 bits values stored in RCAP2L and RCAP2H. If EXEN2 is 1, Timer2 still does the above, bit with an added feature that a 1-to-0 transition at external input T2EX will also trigger the 16-bit reload and set EXF2.

5.2 Serial Interface

The serial port is full duplex, which means it can transmit and receive data simultaneously. There is a receive buffer to commence reception second byte before previously received byte has been read from the receive register. (If the first byte has not been completely read by the time reception of the second byte, one of the bytes will still be lost). The serial port receive and transmit data are both accessed at SBUF. Writing to SBUF loads the transmit register. Read SBUF accesses a physically separate receive register.

Baud Rates

The Mode 0 Baud rate is fixed:

Oscillator Frequency

 $Rate\ Baud\ Mode = 12$

Baud rate in Mode 2 depends on the bit of SMOD in Special Function Register PCON. If SMOD is 0, baud rate is 1/64 of the oscillator frequency; if SMOD is 1, baud rate is 1/32 of the oscillator frequency.

2^{SMOD} X (Oscillator Frequency)

Mode2 Baud Rate= 64

The Baud rate in Mode 1 and Mode 3 can be determined by overflow rate of Timer 1, Timer 2 or both (one for transmit and other for receive).

When Timer 1 is used to generate Baud rate, it is determined by following equation:

2SMOD

Baud Rate = 32 X (Timer1Overflow Rate)

Model No.: LCT-17HT

The Timer 1 interrupt should be disabled in this application. The Timer itself can be configured for either timer or counter in any of its three running modes.

In the Auto-reload mode (high nibble of TMOD = 0010B), the baud rate is given by:

$$\frac{2^{\text{SMOD}}}{\text{Mode (1,3) Baud Rate}} = \frac{Oscillator\ Frequency}{32}$$

$$X \qquad 12x(256-\text{TH1})$$

When Timer 2 is used to generate Baud rate, it is set by TCLK and/or RCLK in T2CON, and the baud rate for transmit and receive can be different.

The baud rate generator mode is similar to the auto reload mode. A rollover in TH2 cause Timer 2 to be reload with 16 bit value which stored in RCAP2H and RCAP2L.

The Timer can be configured for either "timer" or "counter" operation. Normally, as a timer it increments every machine cycle (12 oscillator cycles), as a baud rate generator it increments every state time (2 oscillator cycles). In that case baud rate is give by the following formula:

Mode (1,3) Baud Rate =
$$\frac{Oscillator\ Frequency}{32 \times [65536 - (RCAP2H, RCAP21L)]}$$

where (RCAP2H, RCAP2L) is the content of RCAP2H and PCAP2L taken as a 16 bit unsigned integer which is preset by software.

Timer 2 in baud rate generator mode is valid only if RCLK or TCLK in T2CON is 1. The rollover in TH2 does not set TF2, and will not generate interrupt Also note that if EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L). In this case, T2EX can be used as an extra external interrupt if desire.

Timer 1 Reload Values Common Serial Port Mode 1 Baud Rates

Desired Baud	SMOD	C/T	Timer 1	TH1 Value for 33	TH1 Value for 25	TH1 Value for
Rate		C/I	Mode	MHz clock	MHz clock	11.0592 MHz clock
57.6 Kb/s	1	0	2	FDH	FEH	FFH
19.2 Kb/s	1	0	2	F7H	F9H	FDH
9.6 Kb/s	1	0	2	EEH	F2H	FAH
4.8 Kb/s	1	0	2	DCH	E5H	F4H
2.4 Kb/s	1	0	2	В8Н	САН	E8H
1.2 Kb/s	1	0	2	71H	93H	D0H

Model No.: LCT-17HT

Timer 2 Reload Values	Common Seri	al Port Mode '	1 Baud Rates
Tilliel & Nelbau Values	OUIIIIIIUII UEII	al I UIL WIUUE	i Dauu Nates

Desired Baud	C/T2	33 MH	z clock	25 MH	z clock	11.0592 M	Hz clock
Rate		RCAP2H	RCAP2L	RCAP2H	RCAP2L	RCAP2H	RCAP2L
57.6 Kb/s	0	FFH	EEH	FFH	F2H	FFH	FAH
19.2 Kb/s	0	FFH	CAH	FFH	D7H	FFH	EEH
9.6 Kb/s	0	FFH	95H	FFH	AFH	FFH	DCH
4.8 Kb/s	0	FFH	29H	FFH	5DH	FFH	B8H
2.4 Kb/s	0	FEH	52H	FEH	BBH	FFH	70H
1.2 Kb/s	0	FCH	A5H	FDH	75H	FEH	ЕОН

6.0 Electrical Specifications

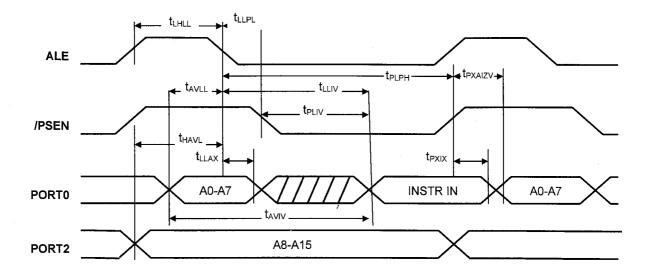
6.1 D.C. Characteristics

SYMBOL	PARAMETERS	MIN	MAX	Unit	Test Conditions
$V_{\rm IL}$	Input Low Voltage	-0.5	0.8	V	
V_{IH}	Input High Voltage	2.4	^V CC ^{+0.5}	V	
V _{OL}	Output Low Voltage	-	0.5	V	I _{OL} =4.0 mA
V_{OH}	Output High Voltage	4.0	-	V	I_{OH} = -4.0mA
I_{CC}	Power Supply Current	-	30	mA	VDD=5V
	Active mode				Frequency=10MHz

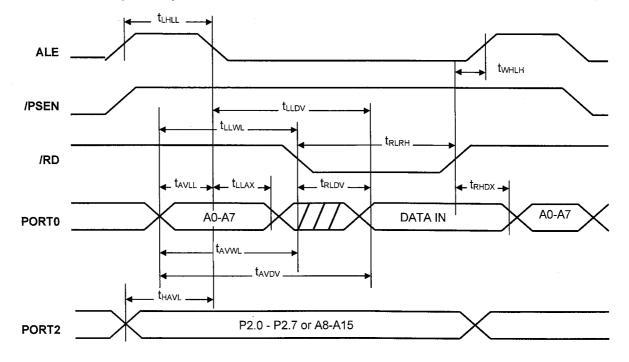
6.2 AC Characteristics

SYMBOL	PARAMETERS	MIN	MAX	Unit
t_{CLCL}	Oscillator Clock Cycle Period	25	-	ns
1 / t _{CLCL}	Oscillator Frequency	0	40	MHz
$t_{ m LHLL}$	ALE Pulse Width	$2t_{CLCL}-40$	-	ns
$t_{\rm HAVL}$	High bytes Address Valid to ALE Low	$2t_{\rm CLCL} - 55$	-	ns
$t_{ m AVLL}$	Address Valid to ALE Low	$t_{\rm CLCL} - 55$	-	ns
$t_{ m LLAX}$	Address Hold After ALE Low	$t_{\rm CLCL} - 35$	-	ns
$t_{ m LLIV}$	Address Low to Valid Instruction In	-	$4t_{CLCL}-100$	ns
t_{LLPL}	ALE Low to /PSEN Low	$t_{CLCL}-40$	-	ns
$t_{\rm PLPH}$	PSEN Pulse Width	$3t_{\rm CLCL}-45$	-	ns
t_{PLIV}	PSEN Low to Valid Instruction In	-	$3t_{CLCL}-105$	ns
t _{PXIX}	Input Instruction Hold After /PSEN	0	-	ns
t _{PXIZ}	/PSEN to Address Valid	-	t _{CLCL} - 25	ns
t _{AVIV}	Address to Valid Instruction In	-	5t _{CLCL} - 105	ns
t_{RLRH}	/RD Pulse Width	6t _{CLCL} – 100	-	ns

Model No.: LCT-17HT



SYMBOL	PARAMETERS	MIN	MAX	Unit
$t_{ m WLWH}$	/WR Pulse Width	$6t_{CLCL}-100$	-	ns
t_{RLDV}	/RD Low to Valid Data In	-	5t _{CLCL} – 165	ns
t_{RHDX}	Data Hold After /RD	0	-	ns
$t_{\rm LLDV}$	ALE Low to Data Valid In	-	$8t_{CLCL} - 150$	ns
t_{AVDV}	Address to Valid Data In	-	9t _{CLCL} – 165	ns
$t_{ m LLWL}$	ALE Low to /RD or /WR Low	3t _{CLCL} - 50	$3t_{CLCL} + 50$	ns
$t_{ m AVWL}$	Address to /RD or /WR Low	$4t_{CLCL}-130$	-	ns
t_{QVWX}	Data Valid to /WR Transition	$t_{CLCL}-60$	-	ns
$t_{\rm QVWH}$	Data Valid to /WR High	$7t_{CLCL} - 150$	-	ns
$t_{ m WHQX}$	Data Hold After /WR	$t_{\rm CLCL} - 50$	-	ns
t _{WHLH}	/RD or /WR high to ALE High	-	$t_{CLCL} + 40$	ns

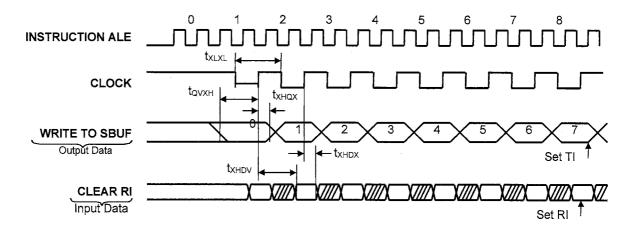

Model No.: LCT-17HT

External Program Memory Read Cycle


External Data Memory Read Cycle

Model No.: LCT-17HT

External Data Memory Write Cycle


Model No.: LCT-17HT Version: 1.0

Serial Port Timing: Shift Register Mode Test Conditions

SYMBOL	PARAMETER	MIN	MAX	Unit
t_{XLXL}	Serial Port Clock Cycle Time	12 t _{CLCL}	-	ns
t_{QVXH}	Output Data Setup to Clock Rising Edge	$9t_{CLCL}-100$	-	ns
t_{XHQX}	Output Data Hold After Clock Rising Edge	$3t_{CLCL}-100$	-	ns
t_{XHDX}	Input Data Hold After Clock Rising Edge	0	-	ns
t _{XHDV}	Clock Rising Edge to Input Data Valid	-	10t _{CLCL} - 133	ns

Shift Register Mode Timing Diagram

Model No.: LCT-17HT

7.0 Flash Programming Guide

Features

- > 64 Kbytes electrically erasable internal program memory
- > Encrypted verifiable
- > 3-level program memory lock
- > 100 program/erase cycles
- > Fully synchronous operation
- ➤ High performance CMOS 100ns read access time
- > 12v external programming voltage

7.1 Description

The flash module is completely synchronous. All the operations are synchronized to the rising edge of the clock (XTAL1 pin). On the rising edge of the XTAL1, the pins' status is sampled and latched. For writing internal registers operations, the latched information is decoded during the XTAL1 high period, and execution is carried out on the falling XTAL1 edge. The flash module executes commands using an eight bit Instruction Register (IR), that defines the operation to be executed. Using the IR enables reading, programming and erasing main array and OTPR. The IR command is defined as the following table.

Table 7-1. IR Command Definition

Command	Code
Read Array	00h
Read OTPR (Key bytes or lock bits)	08h
Erase Array	80h
Erase OTPR (Key bytes or lock bits)	88h
Program Array	40h
Program OTPR (Key bytes or lock bits)	48h

There are two modules in the flash – main array and OTPR.

Main Array

The module's main array contains 64K bytes of memory that serve as the code storage space for program code. The array occupies address space from 0000H to FFFFH.

OTP Rows

These non-volatile cells contain 2K bytes of memory that serve as a special storage space for protection data (i.e. key bytes and lock bits).

Model No.: LCT-17HT

Note: Pin assignments shown below are listed based on 44-pin PLCC package. As for QFP package, the pin number assignment should be shifted accordingly, as comparatively shown in Section 2.1 Pinout Diagram.

Pin No. (PLCC)	Pin Name	Signal Name	Type	Description
44	VDD		IN	Power supply for internal operation,
				5V input
22	GND		IN	Ground
35	/EA	Vpp	IN	Always hold 12V during erase,
				programming and read flash module
10, 33, 18	RST, ALE, P3.6	High	IN	Always hold high during erase,
				programming and read flash module
13, 14, 32	P3.1, P3.2, /PSEN	Low	IN	Always hold low during erase,
				programming and read flash module
31, 30, 29, 28, 27,	P2.7 to P2.0	A15 to A8	IN	Input high-order address bits
26, 25, 24				
9, 8, 7, 6, 5, 4, 3, 2	P1.7 to P1.0	A7 to A0	IN	Input low-order address bits
36, 37, 38, 39, 40,	P0.7 to P0.0	D7 to D0	IN/OUT	Command/Data bus
41, 42, 43				
11	P3.0	/RESET	IN	Flash reset
15	P3.3	IR_EN	IN	Instruction register access enable
16	P3.4	RDY	OUT	Ready signal
17	P3.5	/OE	IN	Output enable
19	P3.7	RD/WR _b	IN	Read/write selection

Program Lock Bits

The M6759 has 3 programmable lock bits that when programmed according to Table 7-2 will provide different levels of protection for the on-chip code and data. The lock bits are in the bit 4, bit 5 and bit 6 of OTPR address 0004. Refer to Figure 7-1 - OTPR arrangement.

Model No.: LCT-17HT

Program Lock Bits			Protection Type	
	LB1	LB2	LB3	
1	1	1	1	No Program Lock features enabled.
				(Code verify will be encrypted by the Encryption
				Array if programmed.)
2	0	1	1	MOVC instructions executed from external
				program memory are disabled from fetching code
				bytes from internal memory, EA is sampled and
				latched on Reset, and further programming of the
				flash is disabled.
3	0	0	1	Same as 2, also verify is disabled.
4	0	0	0	Same as 3, also external execution is disabled.

Encryption Array (key bytes)

There are 4 bytes of encryption array that are initially unprogrammed (all 1's). Every time that a byte is addressed during verify, 2 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encryption verify byte. The key bytes are in the address 0000, 0001, 0002 and 0003 of OTPR space.

The encryption function is available only when LB1 is programmed.

Status Bits

There are two status bits to constrain protection function in M6759. After whole chip is erased (include array and OTPR), ST0 must be programmed to 0. After key bytes and lock bits are programmed, ST1 must be programmed to 0. The status bits are in the bit1 and bit 0 of OTPR address 0004.

Status bits	Program Condition		
ST0	The bit needs to be programmed after erased.		
ST1	The bit needs to be programmed after protection function bytes (lock bits		
	key bytes) is programmed		

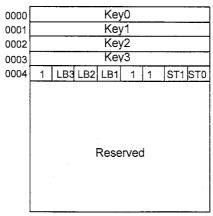
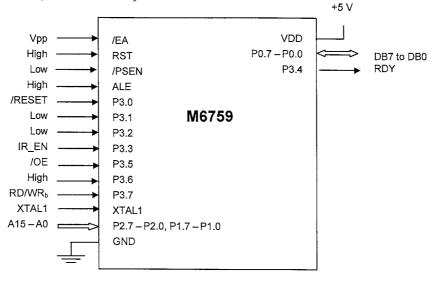


Figure 7-1. OTPR Arrangement Map

Model No.: LCT-17HT

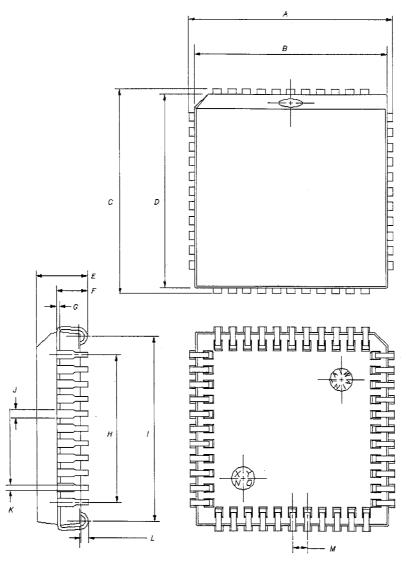


Programming

This mode enables the user to program the main memory and verify its contents. It also allows programming the OTPR. The cells to be programmed are defined by the IR command. In order to program, the required address is applied to the address bus, the required data byte is applied to the data bus and an IR program/verify instruction is executed. /OE signal must be set to high in order to avoid bus contention. This mode is operated through the Instruction Register, and requires the IR to be loaded prior to execution. Several programming pulses may be required to program a cell. Note that in order to succeed in programming, a byte must be fully erased prior to programming it. Erased byte holds the value of FFh. A written bit holds a value of zero. When programming is started. The RDY signal becomes low and remains low until the programming is over. During the period in which RDY signal is low, the module logic inputs are not sampled. The clock signal must be kept during RDY pin low period to ensure RDY is synchronized with the clock signal. Verify operation should be done following each byte programming. It is a read operation with built in margins performed using the IR (RD/WRb is high). If the verify fails, an additional programming cycle must be applied to the same address. Programming failure to a specific address is defined as 30 consecutive attempts to program the same address without a successful verify.

Erasing

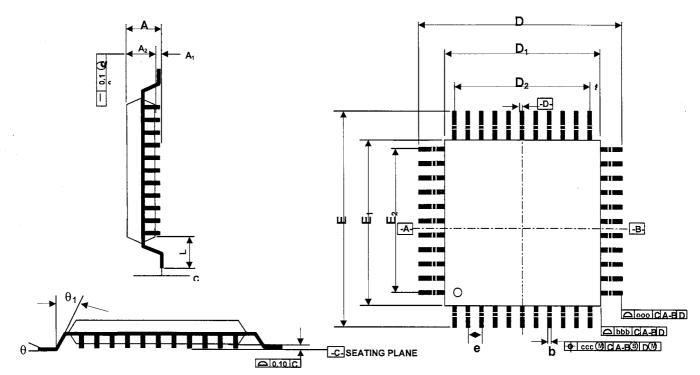
This mode enables the user to erase the array and the OTPR. The cells to be erased are defined by the IR command. The command is executed upon the rising edge of the XTAL1, following writing the erase command into the IR. During erase, /OE signal must be high to avoid bus contention. The RDY signal becomes low and remains low until the erase operation is over. During the period in which RDY signal is low, the module logic inputs are not sampled. The clock signal must be kept during RDY pin low period to ensure RDY is synchronized with the clock signal. Verify procedure is a read operation with built in margins, required to confirm that all the word were successfully erased. To perform verify the user must revert the RD/WRb state to high, and apply an address to the address bus. Verify is carried out on the following rising edge of the XTAL1 signal. All addresses have to be applied sequentially in order to verify the entire array. During verify, /OE must be low to enable reading the erased cells. An erased cell has a value of '1'; thus an erased byte contains FFh.



Model No.: LCT-17HT

8.0 Packaging Information

44-pin PLCC Package



SYMBOL	Dimension in Inches			SYMBOL	Dimension		
	Min	Тур	Max		Min	Тур	Max
Α	0.685	0.690	0.695	Н	-	0.5	· -
В	0.650	0.653	0.656	1	0.595	0.610	0.625
С	0.685	0.690	0.695	J	0.026	-	0.032
D	0.650	0.653	0.656	K	0.013	-	0.021
E	0.168	0.174	0.180	L	0.02	-	0.04
F	0.102	0.105	0.108	M	0.045	0.05	0.055
G	-	0.010	-		a	<u> </u>	

Model No.: LCT-17HT Version: 1.0

44-pin QFP Package

CONTROL DIMENSIONS ARE IN MILLIMETERS

CONTROL DIMENSIONS ARE IN MILLIMETERS						
Symbol	Millimeter			Inch		
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.
Α	-	-	2.55	-	-	0.100
Αı	0.15	0.25	0.35	0.006	0.010	0.014
A ₂	1.90	2.05	2.20	0.075	0.081	0.087
D	1;	3.20 BASI	С	().520 BASIC	;
D ₁	10	0.00 BASI	С	().394 BASIC)
Е	1:	3.20 BASI	С	(0.520 BASIC	;
E ₁	10.00 BASIC			().394 BASIC	;
R ₂	0.13	-	0.30	0.005	-	0.012
R ₁	0.13	_	-	0.005	-	-
θ	0°		7°	0°	ı	7°
θ_1	0°	-	-	0°	-	-
θ_2		10° REF		10° REF		
θ3		7° REF		7° REF		
С	0.10	0.15	0.23	0.004	0.006	0.009
L	0.73	0.88	1.03	0.029	0.035	0.041
L ₁	1.80			0.063		
С	0.10	0.15	0.23	0.004	0.006	0.009
L	0.73	0.88	1.03	0.029	0.035	0.041
L ₁		1.80			0.063	
S	0.20	_	-	0.008	-	-

R ₁ CAGE PLANE 0.25mm	

Symbol	Millimeter			Inch		
	Min.	Nom.	Max.	Min.	Nom.	Max.
b	0.30	0.35	0.45	0.012	0.014	0.018
е		0.80 BSC		0.031 BSC		
D2	8.0			0.315		
E2	8.0			0.315		
000	0.25				0.010	
bbb	0.20				0.008	
ccc	-	0.20	-	-	0.008	-
					•	

NOTES: 1, DIMENSION D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PER SIDE DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE (-H-). 2, DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL. IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.

Model No.: LCT-17HT

T0947 SCALER IC FPR XGA/SXGA LCD MONITORS

SPECIFICATION

Zoom up/down

De-interlacing

Accurate PHS

TCON for XGA

Faster adjust

Mode detect

Optional DRAM

Support all gate/ source drivers

12/24-bit input

DE only for DVI

8-bit gamma

3 separate PWM

Multi-OSD w/ color blending

0.25 um CMOS

Improved interpolation

256 steps each bright/contrast

1.0 INTRODUCTION

This datasheet contents the specification of ZiproSX (or t0947) and ZiproTC2 (t0949) chip for LCD monitor and LCD TV applications.

ZiproSX chip is pin-to-pin compatible with t0944 Zipro (Zoom engine for Interlaced to PROgressive scan) chip with a slightly modification in register programming. ZiproTC2 is pin-to-pin compatible with t0946 ZiproTC chip.

ZiproSX chip is targeted for XGA and SXGA interface and control of TFT-LCD while ZiproTC2 (Zipro with Timing Control V.2) is designed for smart-panel/smart-integration systems of SVGA/XGA display.

ZiproSX and ZiproTC2 chips convert PC/Mac/SUN and TV/HDTV video signals for flat panel display. It performs image scaling on true color RGB or YUV data stream and feeds the scaled pixels to LCD panel. It includes a SDRAM controller for frame rate conversion and interlace to progressive video processing. Besides, the chip contains an OSD (On Screen Display) logic with an overlay port for external OSD signals interface. An auto adjustment function provides automatic frequency, phase, H&V position, and white balance tuning at any screen condition. With no user intervention, the auto adjustment feature offers the jitter-free and best display quality while users display modes changed. Both ZiproSX and ZiproTC2 chips also contain display mode auto detection circuitry which provides accurate H and V timing detection for VESA, Sync-On-Green, and TV/HDTV signals.

To meet the market requirements of low cost, low power, and high level of integration, ZiproTC2 includes the improved timing control circuit for handling gate and source driver ICs for SVGA/XGA TFT-LCD panel directly. This solution, so called smart-panel/smart-integration system, can save the cost of connectors and cable between interface-board and LCD panel module. It also helps to reduce the EMI issue and hence provide the best performance/cost solution for flat panel displays.

ZiproSX (t0947) comes with 128-pin LQFP, 160-pin LQFP and 160-pin PQFP while ZiproTC2 (t0949) is packed in a 160-pin LQFP.

2.0 New Features

- ➤ Embedded controller 4M*16 as well as 1M*16 SDRAM
- ➤ Improved OSD (as t8570) for LCD/PDP user interface.
- > Double-buffering mechanism for frame-rate conversion with no frame tear.
- ➤ The 2nd generation TCON for the 1st-time-right smart-panel control.
- > Peaking and noise-reduction circuits for video enhancement.
- ➤ Improved dithering function for 8-bit to 6-bit conversion on all LCD panels.
- ► Improved PWM (Pulse-Width-Modulation) for more versatile analog control.
- ➤ Hardware display mode detection for HDTV signal.
- ➤ Color space conversion for TV and HDTV (ITU BT 601 and SMPTE 240M).
- Auto increment of address counter for JPEG/bitmap port.
- > Improved Gamma table programming with programmable initial address.

Model No.: LCT-17HT

2.1 General Features

- > Embedded SDRAM controller for interlaced to progressive video and frame-rate conversion.
- > On chip programmable OSD for user interface.
- Embedded hardware for display mode detection.
- Auto adjustment for frequency, phase, H/V position, and white balance.
- > On chip brightness, contrast, and gamma correction.
- Max pixel rate up to 135 MHz.
- > Embedded timing control circuit for source/gate drivers of SVGA/XGA TFT-LCD panel.
- > Three PWMs (Pulse Width Modulators) for general purpose control.
- > Integrated PLL for panel clock generation.
- > 0.25 um CMOS technology with 5V tolerance input pads.

2.2 Input for ZiproSX and ZiproTC2

- ➤ 12-bit GMCH interface with external level-shifters.
- > 24-bit RGB input up to 135MHz.
- ➤ 8-bit YUV 4:2:2 (CCIR 656), 16-bit YUV 4:2:2, and 24-bit YUV 4:4:4 video input. Glueless connection to video sources from ADC, MPEGII decoder or video decoder.
- > Build-in YUV to RGB color space converter.
- Support for Sync-On-Green (SOG) and composite sync mode.
- > 5V tolerance input pads support 5V/3.3V interface.

2.3 Scaler, and de-interlacer

- > Anti-moiré high-quality scaling algorithm.
- > Scaling up and down with filters for different sharpness.

2.4 Operating modes

- > Scaling with no external SDRAM.
- ➤ De-interlacing and frame-rate conversion with external SDRAM.

2.5 Gamma correction and OSD

- > 8-bit Gamma table.
- > Downloadable 64-font RAM for user programmable and graphics fonts.
- Predefined 192-font ROM.
- ➤ Overlay port interface and color look-up table with 4 color indices (for anti-aliasing font and palette) from external OSD chip.
- > Support the pixel-based pattern filling with a graphic port.

2.6 Output

- ➤ Single pixel/clock (24 bit) or double pixels/clock (48 bit) digital RGB output.
- Maximum resolution of color display is 1280*1024 (SXGA).
- Free-run synchronization mode if sync signal disappeared.
- ➤ Compliant with proposed VESA FPDI-2 standard via direct connect to LVDS transceivers.

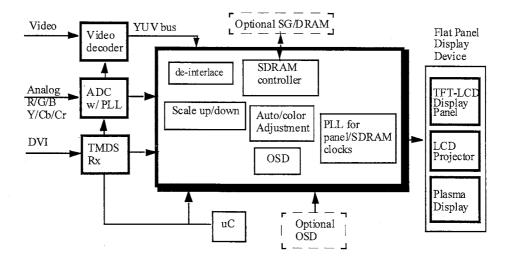
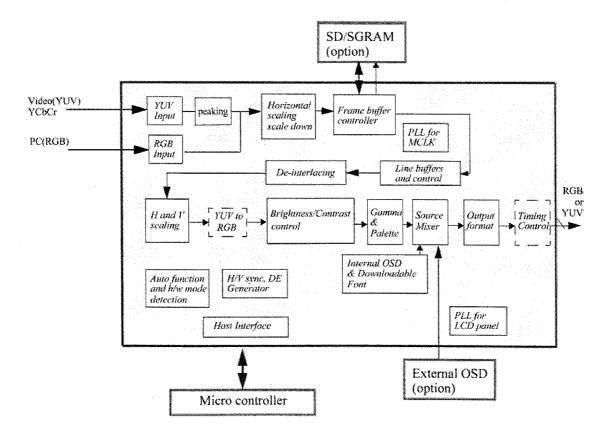
2.7 System software and support

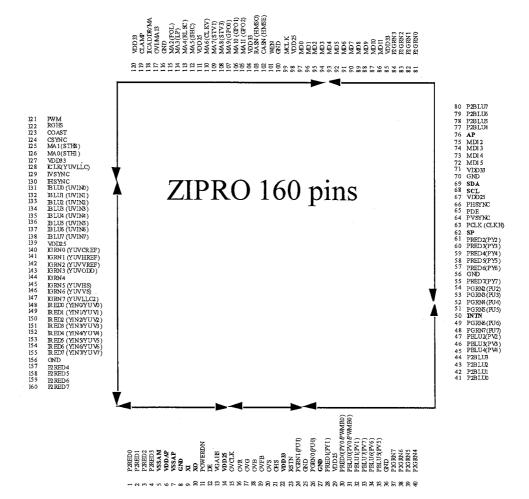
- > Windows based OSD font and GUI design software.
- ➤ HDTV display and LCD multi-sync monitor system software.
- Scaler programming timing table for all VESA/MAC/Workstation and TV/HDTV.

2.8 Applications

- ➤ High resolution TFT-LCD or smart-panel LCD monitors.
- > Set-top box and DVD player to LCD/PDP display devices.
- > NTSC/PAL projection systems for office presentation and home theater.
- ➤ LCOS or OLED displays for HMD applications.
- > Image scaling for video format conversions.

FIGURE 1. Typical application of ZiproSX/ZiproTC2 chip


FIGURE 2. Block diagram of ZiproSX chips

Model No.: LCT-17HT

2.9 Pinning of ZiproSX 160 pins

Model No.: LCT-17HT

TABLE 1. Input Ports (RGB and YUV Data, 34 pins)

Pin #	I/O (drive)	Name	Description
128	I	ICLK(YUVLLC)	Clock for A port input (single/double pixel per clock).
129	I	IVSYNC	Vertical Sync of video A port.
130	I	IHSYNC	Horizontal Sync of video A port
155-148	I		Red input data of video A port. The pin numbers are
133-146	1		listed MSB to LSB. The RGB12bit uses this port and the
		/ TIN[/ . O]/ T O V [/ . O]/ KOD12[T1.4]	MSB
			Green input data of video A port.
			bit 7: YUVLLC2
			bit 6: YUVVS
			bit 5: YUVHS
147-140	I	IGRN[7:0]/RGB12[3:0]	bit 3: YUVODD (ODD or EVEN field)
			bit 2: YUVVREF
			bit 1: YUVHREF
			bit 0: YUVCREF
138-131	I	IBLU[7:0]/UV[7:0]	Blue input data of video A port.
123	О	COAST	COAST signal to ADC (regenerated VS).
122	О	RGHS	Regenerated HS
13	I	VGAHS	VGA input HS
12	I	DE	Display enable signal from digital flat panel interface. This
			signal should be tied to high if DE function is not use
124	I	CSYNC	Composite sync signal that includes HS and VS
119	О	CLAMP	Clamp pulse to ADC. This pin can also be programmed to FID,
			Cinema mode, or PWMR0.
121	О	PWM	Pulse width modulation output (NOTE: pin 23 is the VDD
			Zurac)

TABLE 2. Panel interface (or Display Port) RGB Data, 54 pins)

Pin #	I/O (drive)	Name	Description	
63	О	PCLK (or PHCLK)	Display port A clock for panel (This clock is generated internal PLL)	
65	О	PDE	Display enable (active area of display)	
64	О	PVSYNC	Display Vertical Sync	
66	О	PHSYNC	Display Horizontal Sync	
55,57-61,28,30	О	PRED[7:0] /PY[7:0]/ODRED[7:0]	Display A port or Odd port of red data. The pin numbers are listed from MSB to LSB	

Model No.: LCT-17HT Version: 1.0

Pin #	I/O (drive)	Name	Description
48-49,51-54,24,2	О	PGRN[7:0]	Display A port or Odd port of green data.
6		/PU[7:0]/ODGRN[7:0]	
33-35,45-47,32-3	О	PBLU[7:0]	Display A port or Odd port of blue data
1		/PV[7:0]/ODBLU[7:0]	
160-157,4-1	О	P2RED[7:0]/EVRED[7:0]	Display B port or Even port for red data.
37-40,84-81	О	P2GRN[7:0]/EVGRN[7:0]	Display B port or Even port green data
80-77,44-41	О	P2BLU[7:0]/EVBLU[7:0]	Display B port or Even port blue data
10	О	XO	Reference frequency output for internal oscillator
9	I	XI	Reference frequency input for internal oscillator (should
			be connected to a 14.31818MHz crystal)

TABLE 3. Host Interface Signals (6 pins)

	11 DEL C. 1103¢ Interface Signals (v pins)					
Pin #	I/O (drive)	Name	Description			
118	I/O	IICADDR	Serial I/F sub-address setting			
			/ Memory address bus bit 12			
50	О	INTN	Interrupt to host (active low)			
23	I	RSTN	Device reset (active low)			
69	I/O	SDA	Serial I/F data in/out			
68	I	SCL	Serial I/F clock			
11	I	POWERDN	Power Down, 0: normal, 1:Powerdown			

TABLE 4. Memory Control Port (Frame buffer) (32 pins)

TIBLE 4. Memory Control For (Frame buller) (32 pms)						
Pin #	I/O (drive)	Name	Description			
99	О	MCLK	Memory clock output			
101	О	WEN	Memory write enable			
102	О	CASN	Memory column address strobe			
103	О	RASN	Memory row address strobe			
72-75,86-97	I/O	MD[15:0]	Memory data bus			
105-110,112-1	О	MA[11:0]	Memory address bus			
15,125,126						

Model No.: LCT-17HT Version: 1.0

TABLE 5. Overlay Port (External OSD) (8 pins)

Pin #	I/O (drive)	Name	Description
15	О	OVCLK	Clock for external overlay circuit.
16	I	OVR	Overlay color select R
17	I	OVG	Overlay color select G
18	I	OVB	Overlay color select B
117	I/O	OVI	Overlay intensity select
			/ Memory address bus bit 13
19	I	OVFB	Overlay color enable
20	О	OVS	Overlay V sync signal
21	О	OHS	Overlay H sync signal

TABLE 6. Testing (2 pins)

Pin #	I/O (drive)	Name	Description
76	I	AP	Action pin for testing (should be grounded)
62	I	SP	Shift pin for testing (should be grounded)

FIGURE 3. Timing Control (48+18 shared pins)

D: #	1/0	Dr	Pin name of	Pin name of	Demodelie
Pin #	I/O	(mA)	t0947(ZiproSX)	t0949(ZiproTC2)	Description
			PRED[7:0],	ODRED[7:0],	Odd RGB pixel data (24 pins)
-	О	4	PGRN[7:0],	ODGRN[7:0],	Note: The 1st pixel is at the ODD bus in
			PBLU[7:0]	ODBLU[7:0]	ZiproTC2.
			P2RED[7:0],	EVRED[7:0],	Even RGB pixel data (24 pins)
-	О	4	P2GRN[7:0],	EVGRN[7:0],	Note: The 2nd pixel is at the EVEN bus in
			P2BLU[7:0]	EVBLU[7:0]	ZiproTC
63	О	16	PCLK	CLKH	Clock for source driver IC
126	О	4	MA0	STH1	Start pulse for source driver IC (S1 to S8)
125	О	4	MA1	STH8	Start pulse for source driver IC (S8 to S1)
115	О	4	MA2	POL	Polarity for source driver IC
114	О	4	MA3	LP	Latch pulse for source driver IC
103	О	4	RASN	HMSO	Data inversion control for odd pixel bus (if
					more than half signals in the bus change state,
					this will be set.)
102	О	4	CASN	HMSE	Data inversion control for even pixel bus
113	О	4	MA4	RLSC	R/L indication for source driver IC

Model No.: LCT-17HT

Pin #	I/O	Dr (mA)	Pin name of	Pin name of t0949(ZiproTC2)	Description
112	0	4	MA5	SHC	decode control for TI driver IC
112	U	4	MAS	SILC	decode control for 11 driver ic
110	О	4	MA6	CLKV	Clock for gate driver IC
109	О	4	MA7	STV1	Start pulse for gate driver IC (G1 to G3)
108	О	4	MA8	STV3	Start pulse for gate driver IC (G3 to G1)
107	О	4	MA9	GPO0	Programmable general purpose output 0
106	О	4	MA10	GPO1	Programmable general purpose output 1
105	О	4	MA11	GPO2	Programmable general purpose output 2
66	О	4	PHS	PHS	Panel H sync output signal
64	О	4	PVS	PVS	Panel V sync output signal
65	О	4	PDE	PDE	Panel display enable output signal

TABLE 7. Power and Ground Signals (24 pins include 14 VDD and 10 GND pins)

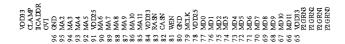
		` •	<u> </u>
Pin #	V	Name	Description
14 ,29,67,98,111,139	2.5	VDD25	Digital power supply (for core cells)
22 ,71,85,104,120,127	3.3	VDD33	Digital power supply (for I/O cells)
8 ,25, 27 ,36,56,70,100,116,1	0	GND	Ground
5	0	VSSAM	Ground pin for MCLK PLL
6	2.5	VDDAP	Power pin for PCLK and MCLK PLL
7	0	VSSAP	Ground pin for PCLK PLL

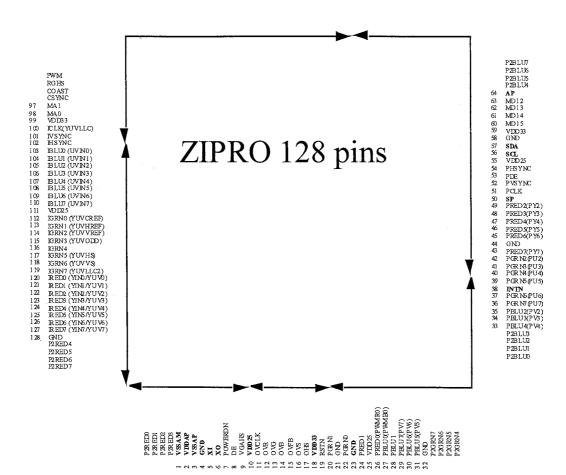
Pin no.	Pin name	Pin no.	Pin name
1	P2RED0 (EVRED0)	41	P2BLU0 (EVBLU0)
2	P2RED1 (EVRED1)	42	P2BLU1 (EVBLU1)
3	P2RED2 (EVRED2)	43	P2BLU2 (EVBLU2)
4	P2RED3 (EVRED3)	44	P2BLU3 (EVBLU3)
5	VSSAM	45	PBLU4(PV4) (ODBLU4)
6	VDDAP	46	PBLU3(PV3) (ODBLU3)
7	VSSAP	47	PBLU2(PV2) (ODBLU2)
8	GND	48	PGRN1(PU1) (ODGRN1)
9	XI	49	PGRN0(PU0) (ODGRN0)
10	XO	50	INTN
11	POWERDN	51	PGRN5(PU5) (ODGRN5)
12	DE	52	PGRN4(PU4) (ODGRN4)
13	VGAHS	53	PGRN3(PU3) (ODGRN3)
14	VDD25	54	PGRN2(PU2) (ODGRN2)
15	OVCLK	55	PRED7(PY7) (ODRED7)

Model No.: LCT-17HT

Pin no.	Pin name	Pin no.	Pin name
16	OVR	56	GND
17	OVG	57	PRED6(PY6) (ODRED6)
18	OVB	58	PRED5(PY5) (ODRED5)
19	OVFB	59	PRED4(PY4) (ODRED4)
20	OVS	60	PRED3(PY3) (ODRED3)
21	OHS	61	PRED2(PY2) (ODRED2)
22	VDD33	62	SP
23	RSTN	63	PCLK (CLKH)
24	PGRN1 (PU1/ODGRN1)	64	PVSYNC (PVS)
25	GND	65	PDE (PDE)
26	PGRN0 (PU0/ODGRN0)	66	PHSYNC (PHS)
27	GND	67	VDD25
28	PRED1 (PY1/ODRED1)	68	SCL
29	VDD25	69	SDA
30	PRED0 (PY0/PWMR0)	70	GND
	(ODRED0)		
31	PBLU0 (PV0/PWMB0)	71	VDD33
	(ODBLU0)		
32	PBLU1 (PV1/ODBLU1)	72	MD15
33	PBLU7 (PV7) (ODBLU7)	73	MD14
34	PBLU6 (PV6) (ODBLU6)	74	MD13
35	PBLU5 (PV5) (ODBLU5)	75	MD12
36	GND	76	AP
37	P2GRN7 (EVGRN7)	77	P2BLU4 (EVBLU4)
38	P2GEN6	78	P2BLU5 (EVBLU5)
39	P2GRN5 (EVGRN5)	79	P2BLU6 (EVBLU6)
40	P2GEN4	80	P2BLU7 (EVBLU7)

Pin no.	Pin name	Pin no.	Pin name
81	P2GRN0 (EVGRN0)	121	PWM
82	P2GRN1 (EVGRN1)	122	RGHS
83	P2GRN2 (EVGRN2)	123	COAST
84	P2GRN3 (EVGRN3)	124	CSYNC
85	VDD33	125	MA1(STH8)
86	MD11	126	MA0(STH1)
87	MD10	127	VDD33
88	MD9	128	ICLK(YUVLLC)
89	MD8	129	IVSYNC


Model No.: LCT-17HT Version: 1.0



90	MD7	130	IHSYNC
91	MD6	131	IBLU0(UVIN0)
92	MD5	132	IBLU1(UVIN1)
93	MD4	133	IBLU2(UVIN2)
94	MD3	134	IBLU3(UVIN3)
95	MD2	135	IBLU4(UVIN4)
96	MD1	136	IBLU5(UVIN5)
97	MD0	137	IBLU6(UVIN6)
98	VDD25	138	IBLU7(UVIN7)
99	MCLK	139	VDD25
100	GND	140	IGRN0(YUVCREF)
101	WEN	141	IGRN1(YUVVREF)
102	CASN (HMSE)	142	IGRN2(YUVVREF)
103	RASN (HMSO)	143	IGRN3(YUVODD)
104	VDD33	144	IGRN4
105	MA11 (GPO2)	145	IGRN5(YUVHS)
106	MA10 (GPO1)	146	IGRN6(YUVVS)
107	MA9 (GPO0)	147	IGRN7(YUVLLC2)
108	MA8 (STV3)	148	IRED0(YIN0/YUV0)
109	MA7 (STV1)	149	IRED1(YIN1/YUV1)
110	MA6 (CLKV)	150	IRED2(YIN2/YUV2)
111	VDD25	151	IRED3(YIN3/YUV3)
112	MA5 (SHC)	152	IRED4(YIN4/YUV4)
113	MA4 (RLSC)	153	IRED5(YIN5/YUV5)
114	MA3 (LP)	154	IRED6(YIN6/YUV6)
115	MA2 (POL)	155	IRED7(YIN7/YUV7)
116	GND	156	GND
117	OVI(MA13)	157	P2RED4
118	IICADDR/MA12	158	P2RED5
119	CLAMP	159	P2RED6
120	VDD33	160	P2RED7

2.10 Pinning of ZiproSX 128 pins

Model No.: LCT-17HT

TABLE 8. Input Ports (RGB and YUV Data, 34 pins)

Pin #	I/O (drive)	Name	Description
100	I	ICLK(YUVLLC)	Clock for A port input (single/double pixel per clock).
101	I	IVSYNC	Vertical Sync of video A port.
102	I	IHSYNC	Horizontal Sync of video A port
127-120	I	IRED[7:0]	Red input data of video A port. The pin numbers are listed
		/YIN[7:]/YUV[7:0]/RGB12[11:4	from MSB to LSB. The RGB12bit uses this port and the
]	MSB of IGRN port.
			Green input data of video A port.
		IGRN[7:0]/RGB12[3:0]	bit 7: YUVLLC2
			bit 6: YUVVS
119-112	ī		bit 5: YUVHS
119-112	1		bit 3: YUVODD (ODD or EVEN field)
			bit 2: YUVVREF
			bit 1: YUVHREF
			bit 0: YUVCREF
110-103	I	IBLU[7:0]/UV[7:0]	Blue input data of video A port
9	I	VGAHS	VGA input HS
8	I	DE	Display enable signal from digital flat panel interface. This
			signal should be tied to high if DE function is not used

TABLE 9. Panel interface (or Display Port) (RGB Data, 54 pins)

Pin #	I/O (drive)	Name	Description
51	О	PCLK	Display port A clock for panel (capability is 8 mA) (This clock
			is generated from internal PLL)
53	О	PDE	Display enable (active area of display)
52	О	PVSYNC	Display Vertical Sync
54	О	PHSYNC	Display Horizontal Sync
43,45-49,24,26	О	PRED[7:0] /PY[7:0]	Display A port red data.
36-37,39-42,20,22	О	PGRN[7:0]/PU[7:0]	Display A port green data. The pin numbers are listed from
			MSB to LSB
29-31,33-35,28-27	О	PBLU[7:0]/PV[7:0]	Display A port blue data
6	О	XO	Reference frequency output for internal oscillator
5	I	XI	Reference frequency input for internal oscillator (should be
			connected to a 14.31818MHz crystal)

Model No.: LCT-17HT

TABLE 10. Host Interface Signals (6 pins)

Pin #	I/O	Name	Description
38	О	INTN	Interrupt to host (active low)
19	I	RSTN	Device reset (active low)
57	I/O	SDA	Serial I/F data in/out
56	I	SCL	Serial I/F clock
7	I	POWERDN	Power Down, 0: normal, 1:Powerdown

TABLE 11. Memory Control Port (Frame buffer) (32 pins)

Pin #	I/O	Name	Description
79	O	MCLK	Memory clock output
81	I	WEN	Memory write enable
82	I	CASN	Memory column address strobe
83	I	RASN	Memory row address strobe
60-63,66-77	I	MD[15:0]	Memory data bus
85-90,92-95,97-98	I	MA[11:0]	Memory address bus

TABLE 12. Overlay Port (External OSD) (8 pins)

	1222 12v 0 verily 1 ov (Enterim 0,2) (0 pms)						
Pin #	I/O	Name	Description				
11	О	OVCLK	Clock for external overlay circuit.				
12	I	OVR	Overlay color select R				
13	I	OVG	Overlay color select G				
14	I	OVB	Overlay color select B				
15	I	OVFB	Overlay color enable				
16	О	OVS	Overlay V sync signal				
17	О	OHS	Overlay H sync signal				

TABLE 13. Testing (2 pins)

Pin #	I/O	Name	Description
64	I	AP	Action pin for testing (should be grounded)
50	50 I SP		Shift pin for testing (should be grounded)

TABLE 14. Power and Ground Signals (23 pins include 13 VDD and 10 GND pins)

Pin #	I/O	Name	Description
10 ,25,55,78,91,111	2.5	VDD25	Digital power supply (for core cells)
18 ,59,65,84,99	3.3	VDD33	Digital power supply (for I/O cells)
4 ,21, 23 ,32,44,58,80,96,1	0	GND	Ground
1	0	VSSAM	Ground pin for MCLK PLL
2	2.5	VDDAP	Power pin for PCLK and MCLK PLL
3	0	VSSAP	Ground pin for PCLK PLL

Model No.: LCT-17HT

Pin no.	Pin name	Pin no.	Pin name
1	VVSAM	33	PBLU4(PV4)
2	VDDAP	34	PBLU3(PV3)
3	VSSAP	35	PBLU2(PV2)
4	GND	36	PGRN7(PU7)
5	XI	37	PGRN6(PU6)
6	XO	38	INTN
7	POWERDN	39	PGRN5(PU5)
8	DE	40	PGRN4(PU4)
9	VGAHS	41	PGRN3(PU3)
10	VDD25	42	PGRN2(PU2)
11	OVCLK	43	PRED7(PY7)
12	OVR	44	GND
13	OVG	45	PRED6(PY6)
14	OVB	46	PRED5(PY5)
15	OVFB	47	PRED4(PY4)
16	OVS	48	PRED3(PY3)
17	OHS	49	PRED2(PY2)
18	VDD33	50	SP
19	RSTN	51	PCLK
20	PGRN1	52	PVSYNC
21	GND	53	PDE
22	PGRN0	54	PHSYNC
23	GDN	55	VDD25
24	PRED1	56	SCL
25	VDD25	57	SDA
26	PRED0(PWMR0)	58	GND
27	PBLU0(PWMB0)	59	VDD33
28	PBLU1	60	MD15
29	PBLU7(PV7)	61	MD14
30	PBLU6(PV6)	62	MD13
31	PBLU5(PV5)	63	MD12
32	GND	64	AP

Pin no.	Pin name	Pin no.	Pin name
65	VDD33	97	MA1
66	MD11	98	MA0
67	MD10	99	VDD33
68	MD9	100	ICLK
69	MD8	101	IVSYNC
70	MD7	102	IHSYNC
71	MD6	103	IBLU0(UVIN0)
72	MD5	104	IBLU1(UVIN1)
73	MD4	105	IBLU2(UVIN2)
74	MD3	106	IBLU3(UVIN3)
75	MD2	107	IBLU4(UVIN4)
76	MD1	108	IBLU5(UVIN5)
77	MD0	109	IBLU6(UVIN6)
78	VDD25	110	IBLU7(UVIN7)
79	MCLK	111	VDD25
80	GND	112	IGRN0(YUVCREF)
81	WEN	113	IGRN1(YUVVREF)
82	CASN	114	IGRN2(YUVVREF)
83	RASN	115	IGRN3(YUVODD)
84	VDD33	116	IGRN4
85	MA11	117	IGRN5(YUVHS)
86	MA10	118	IGRN6(YUVVS)
87	MA9	119	IGRN7(YUVLLC2)
88	MA8	120	IRED0(YIN0/YUV0)
89	MA7	121	IRED1(YIN1/YUV1)
90	MA6	122	IRED2(YIN2/YUV2)
91	VDD25	123	IRED3(YIN3/YUV3)
92	MA5	124	IRED4(YIN4/YUV4)
93	MA4	125	IRED5(YIN5/YUV5)
94	MA3	126	IRED6(YIN6/YUV6)
95	MA2	127	IRED7(YIN7/YUV7)
96	GND	128	GND

3.0 CHARACTERISTICS

3.1 Recommended Operating Conditions

Item	Value
Operating voltage	2.5V and 3.3V plus/minus 10%
Operating chassis temperature	0°C to 80°C
Total power dissipation	Max. 0.64 W (XGA LCD panel @ 85Hz)

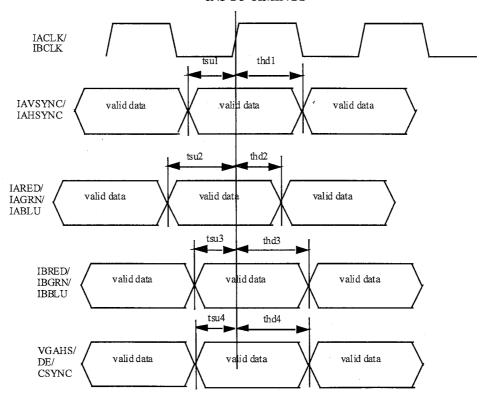
3.2 DC CHARACTERISTICS

VDD3 = 3.0 to 3.6V; VDD2 = 2.25 to 2.75V; VDDAP = 2.4 to 2.6V; Tamb = 25 C; unless otherwise specified.

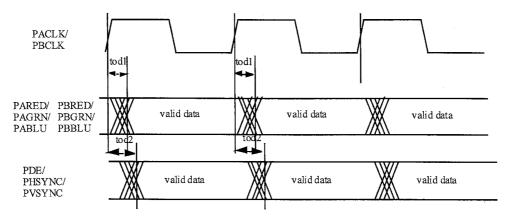
SYMBOL	PARAMETER	Remark	MIN.	TYP.	MAX.	UNIT	
Powers		1	1	ul.	•		
VDD3	I/O digital supply voltage		3.0	3.3	3.6	V	
VDD2	core digital supply voltage		2.25	2.5	2.75	V	
VDDAP	PLL A+D supply voltage		2.4	2.5	2.6	V	
I_{DD3}	I/O digital supply current		-	_	80	mA	
$ m I_{DD2}$	core digital supply current		-	_	150	mA	
Digital inputs	•					•	
VIL _(SDA, SCL)	input low level of SDA, SCL		-0.5	_	0.3*VDD3	V	
VIH _(SDA, SCL)	input high level of SDA, SC L		0.7*VDD3	_	5.0+0.5	V	
VIL _(IA/BCLK)	input low level of clock pins		-0.5	-	0.6	V	
VIH _(IA/BCLK)	input high level of clock pins		2.2	_	5.0+0.5	V	
VIL _(all other)	input low level of other inputs		-0.5	_	0.8	V	
VIH _(all other)	input high level of other inputs		2.0	_	5.0+0.5	V	
ILI	input leakage current		-	-	10.0	uA	
Digital outputs	•					•	
VOL _(SDA)	output low level @ SDA	IOL=3mA	-	_	0.4	V	
VOL _(all other)	output low level of all other		-	-	0.4	V	
VOH _(all other)	output high level of all other		2.4	-	-	V	

3.3 AC CHARACTERISTICS

All timing is measured at 1.5V logic switching threshold and VDD3 = 3.3V; VDD2 = 2.5V; VDDAP = 2.5V; T_{amb} = $25^{\circ}C$; unless otherwise specified.


SYMBOL	PARAMETER	min. setup time	min. hold time	UNIT
Input signals	(RGB / YUV data and overlay ports)			
tsu1/thd1	IAVSYNC/IAHSYNC setup/hold time	3.0	1.0	ns

Model No.: LCT-17HT



tsu2/thd2	IAR/IAG/IAB input data setup/hold time	3.0	1.0	ns
tsu3/thd3	IBR/IBG/IBB input data setup/hold time	3.0	1.0	ns
tsu4/thd4	control signal (VGAHS/DE/CSYNC) setup/hold	3.0	1.0	ns
	time			
tsu5/thd5	Overlay inputs (OVR/G/B/I/FB) setup/hold time	1.0	3.4	ns
Output signals		max.		
Output signals		delay time		
tod1	pixel data output delay (PAR/G/B, PBR/G/B)	4.5		ns
tod2	control signal (PDE, PHS/PVS) output delay	5.0		ns

INPUT TIMINGS

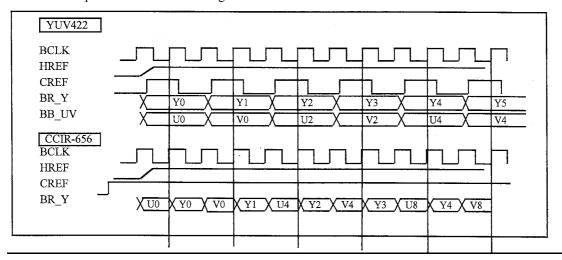
OUTPUT TIMINGS

Model No.: LCT-17HT

4.0 FUNCTIONAL DESCRIPTION OF BLOCKS

4.1 YUV input port

The YUV input port supports interlaced video streams and provides connection to most common decoder ICs.


This chip supports 8-bit YUV 4:2:2 (CCIR 656), 16-bit YUV 4:2:2 video input. Each input format can be binary offset or 2's complement.

The YUV input formats are tabulated below. The selection of YUV or RGB inputs are activated by the setting of YUVF (bit 4 of INCTR1 or 02 hex) bit.

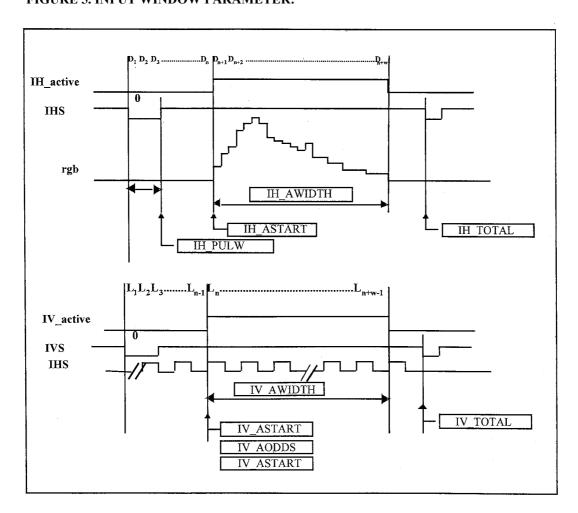
TABLE 15.

Signal	16-bit 4	1:2:2		8-bit 4:2:	2 (CCIR-656)	
YIN7	Y07	Y17	U07	Y07	V07	Y17
YIN6	Y06	Y16	U06	Y06	V06	Y16
YIN5	Y05	Y15	U05	Y05	V05	Y15
YIN4	Y04	Y14	U04	Y04	V04	Y14
YIN3	Y03	Y13	U03	Y03	V03	Y13
YIN2	Y02	Y12	U02	Y02	V02	Y12
YIN1	Y01	Y11	U01	Y01	V01	Y11
YIN0	Y00	Y10	U00	Y00	V00	Y10
UVIN7	U07	V07				
UVIN6	U06	V06				
UVIN5	U05	V05				
UVIN4	U04	V04				
UVIN3	U03	V03				
UVIN2	U02	V02				
UVIN1	U01	V01				
UVIN0	U00	V00				

FIGURE 4. Input YUV format & timing

Model No.: LCT-17HT

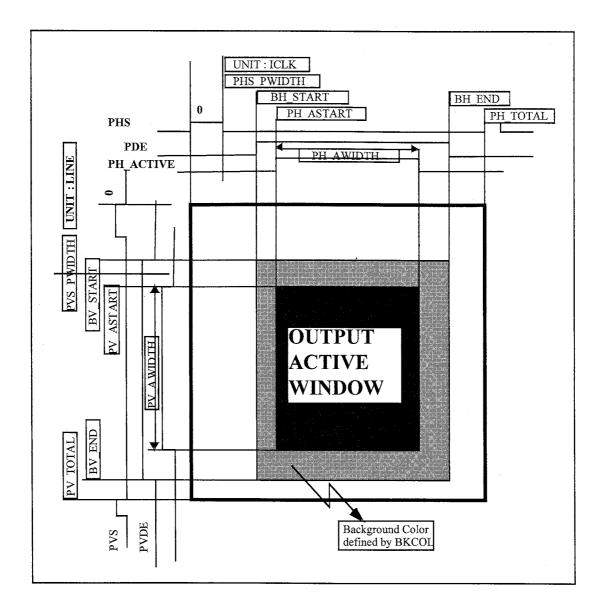
4.2 JPEG-write input port


The JPEG-write input port is implemented to display a picture decoded by an external JPEG decoder. The basic timing for JPEG-write is shown below: The input data of JPEG write is in 8-bit YUV422 or U0-Y0-V1 format.

There are three operation mode of JPEG write procedure. Legacy mode is compatible with Zipro (t0944); Horizontal and Vertical auto-incremental mode are proposed for more efficient JPEG programming interface.

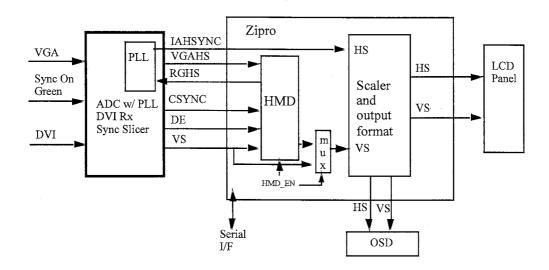
4.3 Input/output window definition

This section describes the input window. The signals IH_PULW, IH_ASTART and IH_TOTAL count from IHS falling edge. If IH_ASTART= n and IH_AWIDTH = w, then the first and the last active data are D_{n+1} and D_{n+w} respectively. If IV_ASTART=n and IV_ACTIVE = w, then the fist active line is Ln and last active line is L_{n+w-1} .


FIGURE 5. INPUT WINDOW PARAMETER:

Model No.: LCT-17HT

FIGURE 6. Output Window parameters.



Model No.: LCT-17HT

4.4 Hardware Mode Detection (HMD)

Hardware mode detection detects the presences and frequencies of HS, VS, and DE.

4.5 Color adjust and color space convert (matrix)

The ZiproSX and ZiproTC2 chip accepts either RGB or YUV and feeds to display devices in RGB format.

The RGB adjustments are

Rout = R*contrast + brightness

Gout = G*contrast + brightness

Bout = B*contrast + brightness

Note that the contrast control uses a 8-bit signal to set a multiply value from 2 to 0 (in fact, the 256 choices are 255/128, 254/128, ..., 128/128, ..., 1/128, 0). The brightness correction uses a 8-bit signal to set an offset value from 127 to -128 (the 256 choices are 127, 126, ..., 1, 0, -1, ..., -127, -128). The control signals BRIGHTNESS[7:0] and CONTRAST[7:0] are programmable via serial interface.

The formula to set CONTRAST[7:0] value is ((CONTRAST+128) mod 256)/128 where CONTRAST is in the range of [255,0]. For brightness control, the signal BRIGHTNESS[7:0] is interpreted as a 2s complement value. These settings are tabulated as **TABLE 17.**

Contrast correction for MSB=0									
contrast[7:0]	7f(hex)	7e	02	01	00				
multiply value	255/128	254/128	130/128	129/128	128/128				
Contrast correction for MSB=1									
contrast[7:0]	ff(hex)	fe	82	81	80				
multiply value	127/128	126/128	2/128	1/128	0/128				

Model No.: LCT-17HT

Brightness correction for MSB=0										
brightness[7:0]	7f(hex)	7e	7d	02	01	00				
offset value	127	126	125 .	2	1	0				
Brightness correction	Brightness correction for MSB=1									
brightness[7:0] ff(hex) fe fd 82 81 80										
offset value	-1	-2	-3	-126	-127	-128				

The block diagram is depicted as follows:

FIGURE 7. Function of contrast followed by brightness control for each RGB.

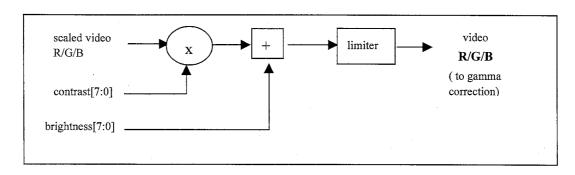
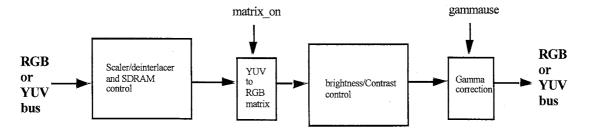



FIGURE 8. Data path for RGB/YUV in and RGB/YUV out

Model No.: LCT-17HT

4.6 Clock system

t0947/t0949 chips have two PLL for PCLK and MLCK generation. PCLK is used for display panel clocking and MCLK for SD/SGRAM memory interface. These PLLs synthesize clocks via the 2-wire serial bus programming. The registers and block diagram are depicted as follows:

14.31818 MHz Output PCLK Input BUF VCO PFD Xtal Osc. Divider Divider (NO) (NR) PBP Feedback R[4:0] Divider (NF) F[8:0] MSB LSB PLLPSETO/PLLMSETO F7 F5 F4 F3 F6 F2 F1 F0 (BA/BC hex) PLLPSET1/PLLMSET1 R2 F8 OD1 OD0 R4 R3 R1 R0 (BB/BD hex) PLLCNTL

Pdiv4N/A

MOE MBP

N/A N/A

FIGURE 9. MPLL/PPLL Block diagram and control registers:

POE PBP

(BE hex)

PLL program para	ameter		•	
PLLPSET0	BA	4F	W	F7(MSB), F6, F5, F4, F3, F2, F1, F0
FI(7 downto 0)				(LSB)
				The 8 LSB of feedback 9-bit divider
				The default value will set the PCLK to 65MHz
PLLPSET1	BB	47	W	F8(MSB), OD1, OD0, R4, R3, R2, R1, R0 (LSB)
FI(8) & ODI				F8 is the MSB of feedback 9-bit divider, OD0 (MSB) and OD1
(1 down to 0) &				(LSB) are the control pins for output divider, and R4 to R0 are
RI(4 down to 0)				the pins for input 5-bit divider
PLLMSET0	ВС	7C	W	F7(MSB), F6, F5, F4, F3, F2, F1, F0 (LSB)
FI(7 down to 0)				The 8 LSB of feedback 9-bit divider
				The default value will set the MCLK to 100 MHz
PLLMSET1	BD	47	W	F8(MSB), OD1, OD0, R4, R3, R2, R1, R0 (LSB)
FI(8) & ODI				F8 is the MSB of feedback 9-bit divider, OD0 (MS and OD1
(1 down to 0) &				(LSB) are the control pins for output divider, and R4 to R0 are
RI(4 down to 0)				the pins for input 5-bit divider.

Model No.: LCT-17HT

PLLCNTL	BE	00	W	POE(MSB), PBP, Pdiv4, xx, MOE, MBP,xx,
Output enable and bypass control	-			BACLK_SEL (LSB) where POE is the freq Output
for Pclk and Mclk PLL.				Enable of Pclk PLL (default 0), PBP is the ByPass control
				of Pclk PLL (default 0), and MOE/MBP are for Mclk
				PLL, xx is do not care. PLL will go to power down mode
				as the external POWERDN pin activated. Pdiv4 is used to
				further divide the Pclk frequency by the factor of 4 or not.

1. The frequency derived from the PLL frequency synthesizer is formulated as follows: PCLK/MCLK = Fin * NF/(NR*NO).

Where Fck = Fin*NF/NR, the output freq of VCO, should be in the range of 80 MHz to 200 MHz. The freq of PCLK can be modified by programming the register of NF, NR, and OD. The values of the divider should be set by subtracting the actual value by 2, i.e. if divided by 8 is what we want, then the binary values of the input control register should be set to 6 (e.g. NF is 000000110). The output divider (NO) control register is set by the following.

2. The bit BP (bypass) will be set to 1, if PLL is being tested, otherwise reset for normal PLL function.

TABLE 18.

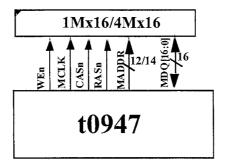
Output Divider	Divided by
OD1=0 OD0=0	NO=1
OD1=0 OD0=1	NO=2
OD1=1 OD0=0	NO=2
OD1=1 OD0=1	NO=4

For example, if we want to get a 100 MHz output freq clock and Fin=14.31818 MHz, we need to set NF/NR = 140/10, and OD=2. In a sense, NF=010001010(bin), NR=01000, and OD=10.

Another example, if we want to get a 65 MHz output freq clock for XGA LCD panel and Fin=14.31818 MHz, we need to set NF/NR = 227/25, and OD=2. In a sense, NF=227-2=e1(hex), NR=25-2=17(hex), and OD=10(bin). Therefore, we need to program the register PLLPSET0 (BA) with a value e1(hex) and PLLPSET0 (BB) with 57.

Pclk can be further divided by the factor of 4 using Pdiv4.

MCLK can be turn off by program the register FBC_BYPASS (FBCTR2[6]) to "1"


4.7 Memory Interface

The ZiproSX(t0947) chips perform frame rate conversion (FRC) by replicating or dropping the input frames using the external SDRAM as the frame buffers. The major features are:

- > Double-buffer mechanism is used to prevent the frame tearing.
- > The data path width to the external SDRAM is 16 bits.
- Programmable sub-image store/display for cropping and panning.
- Programmable top/bottom and left/right reversal for scan sequence flipping.
- > Full screen freeze.
- > De-interlacing scheme is used for preventing the motion artifacts as in the video.

The block diagram of the memory interface is the following:

FIGURE 10. Block Diagram of the Memory I/F

ZiproSX chip, t0947, supports one 1Mbx16 or one 4Mx16 SDRAM access. In a word, the frame buffer data path is 16-bit. Speed grades of 83-125 MHz are suggested. The data compression of 24-bit to 16-bit is also supported for reducing the access bandwidth. ZiproTC2 does not support SDRAM interface.

The FBC (frame buffer control) function can be bypassed by setting the bit 1 in the MISCTR0 (Misc. ConTrol Register 0, 0AH) register. To this, the frame rate conversion (includes de-interlacing) circuit will be disabled and the scaling function is performed upon the same frame rate as the input video.

Note that the registers 0xEA to 0xED are for SD/SGRAM mode setting, and registers 0xE6-0xE9 are for SD/SGRAM interface setting. Besides, a frame buffer test pattern can be defined and tested by the settings in FBC_PAT register (E5H) and the bit 7 (FILL_PAT) of FBCTR0 (E0H).

Model No.: LCT-17HT

4.7.1 Initialization of FBC (Frame Buffer Controller) and SDRAM

- 1. Turn on the MCLK by setting the register FBC_BYPASS (FBCTR2[6]) to "0" and enable FBC block by set BYPASS register (MISCTR0 [1]) to "0".
- 2. Program the SD/SGRAM mode setting registers (0xEA to 0xED) to proper value.
- 3. Toggle the register LMR_REQ(FBCTR0[6]) to load the SD/SGRAM mode data to SD/SGRAM. This will finish the initialization procedure of SD/SGRAM.

4.7.2 Self-test programming sequence of FBC

We provide a procedure which be used for testing the correctness of SDRAM access. The procedure is described as below:

Step1: Initialize the FBC as describe in 4.7.1.

Step2: Set the FBC BASE ADDR to the starting address for testing access.

Step3: Set FBC_TEST_CN to "01". This will set FBC_TEST_ACT to "1" and entering the Self-Test Mode of FBC.

Step5: Set FBC TEST CN to "81" then "01". This will toggle FBC VS and reset the FBC block.

Step6: Set FBC TEST CN to "41", i.e. Set FBC VACT to "1".

Step7: Set FBC_TEST_CN to "61" then "41" "twice". This will toggle FBC_HS twice to start the SDRAM write access.

Step8: Set FBC_TEST_CN to "51". This will FBC_HACT to "1".

Step9: Generate a loop of I2C write access to FBC_TEST_PAT (xE4) with proper test pattern for 64 times.

Step10: Set FBC_TEST_CN to "01".

Step11: Set FBC_TEST_CN to "21" the "01". This will toggle FBC_HS to finish SDRAM write access.

Step12: Set FBC_TEST_CN to "09" then "01". This will toggle FBC_SDRAM_RD to read 64 bytes of data from SDRAM to internal FIFO.

Step13: Read I2C register FBC_TEST_RESULT (0xEF) for 64 times. This will read back the internal FIFO data.

Step14: Compare the result data with the test patterns which you had written.

Step15: Set bit 0 of FBC_TEST_CN to "0" to exiting the Self-Test Mode

If the results are mismatched:

Solution1: Don't exit the Self-Test mode and repeat the procedure.

Solution2: Adjust the setting of register FBCTR3 (MCLK input/output delay) then repeat the procedure.

Note: "Toggle" means the operation of set and reset the corresponding bit.

4.7.3 Freeze and Vertical flip of the frame

When you set Freeze_FB(FBCTR2[7]) to "1", you will enter the freeze mode and the frame is stilled. When you set V_flip(FBCTR1[7]) to "1", you can let the frame top/bottom reversal.

Model No.: LCT-17HT

4.7.4 The DRAM supp	rting modes of ZiproSX
---------------------	------------------------

Input resolution	Pixel rate (MHz)	peak	Output resolution	Configuration, data path, number of devices of SDRAMs, and offered bandwidth			
		bandwidth needed		(overhead for access setup is supposed to be 15%)			
				125MHz	100MHz	83MHz	
1024*768	79	12 Mb, 287	1024*768	1Mbx16, 16-bit			
@75Hz		MB/s	@60Hz	path, x1			
				(212MB/s)			
800*600	56.25	7.32 Mb,	800*600	1Mbx16, 16-bit	1Mbx16,		
@85 to 60Hz		192.5 MB/s	@60Hz	path, x1	16-bit path, x1		
				(212MB/s)	(170MB/s)		
720*576i	I13.5/ P27	12.66 Mb, 81	720*576		1Mbx16,	1Mbx16,	
@60Hz		MB/s	@60Hz		16-bit path, x1	16-bit path, x1	
					(170MB/s)	(141MB/s)	

NOTE:

- 1) Signal buffer is used for SVGA and XGA input.
- 2) Offered bandwidth is calculated by the formula: BW = Access speed*(data path/8)*(1-15%)

1024*768@75 to 60Hz: BW=(78.75+65)*16/8=287 MB/s, 1024*768*16/1024/1024=12 Mb 800*600@85 to 60Hz: BW=(56.25+40)*16/8=192.5 MB/s, 800*600*16/1024/1024=7.32 Mb 720*576I to P: BW=(13.5+27)*16/8=81 MB/s, 2*720*576*16/1024/1024=12.66 Mb

4.8 De-interlacing

t0947 chip converts the interlaced video signal into a progressive display. A motion-adaptive filtering refers to a mechanism using a decision on the presence and absence of motion. In the absence of motion, the best image can be obtained by simply merging even and odd fields which doubles the vertical resolution. However, in the presence of motion, this technique would suffer from motion artifacts. A de-interlacing circuit is used to interpolate the missing pixel using the intra-frame pixel data.

4.9 Gamma Correction RAM Tables

Gamma correction RAM tables are implemented after the Brightness/Contrast block to provide the color-mapping of the RGB data. The tables can be activated by setting GAMMAUSE (MSB of MISCTR0 or 0A hex) bit = 1. We can also by-pass the gamma correction function by resetting the GAMMAUSE bit = 0. Through three gamma table registers (GRWADDR, GGWADDR and GBWADDR) the data representing gamma curves can be put into the RAMs sequentially. These 10-bit gamma tables can be programmed by writing first the two MSB bits to high byte and the eight LSB bits to low byte for the first entity then the second and so on. And we can repeatedly program the register GRWADDR 512 times (high and low bytes for 256 entities). This will put the Red gamma curve into the Red RAM table (the first 10-bit data is written into RAM at address 0 and the 256th data is written into RAM at address 255). In a similar way, we can program the tables for Green and Blue channels.

Model No.: LCT-17HT

4.10 CLUT, and Dithering

This chip embeds an On Screen Display function for human interfacing. It is designed to display colored patterns, icons or characters onto the screen. A 64 character fonts (downloadable from MCU) are provided for the application of Multi-language TV/Monitor. The Graphic Character Fonts can produce the effect of the pixel based graphic display, which allows the impressive display of the customized pattern or logos.

The OSD provides plentiful features to enhance the appearance of the displayed character fonts. Each character can have its own colors (up to 16 colors) and blinking option. Up to 10 shadowing modes (including bordering, boxing etc.) are provided together with 16 background colors. The versatile choice for display font color, background/shadow/window color, and shadow modes (including bordering and graphic character mode) leads to a unique OSD style. Some dynamic features, such as built-in see-through curtain effect, two-direction wipe in/out, character basis blinking, hardware overlapping windows etc. also enhance the image of OSD menu.

There is a 16x16 CLUT (color look-up table) which provides a programmable color palette for internal/external OSD and background color. The color index bus, namely R/G/B/I, is used as the address to the CLUT which defines the 16 colors for OSD and background color. The content and the index selection of CLUT are programming via serial interface. The mapping of the 16-bit RGB565 color to 24-bit true color is depicted as the following figure.

The format converter function for LCD panel also supports the dithering function. The related setting of dithering function are listed as below:

Function	Addr.(h)	Default	R/W	Description
		Value		
DITHER_ON	x03[6:5]	00	W	00: no dithering (for the panel with 8 bit color depth
				per R/G/B)
				01: 1 bit dithering (for the panel with 7 bit color depth
				per R/G/B)
				10: 2 bit dithering (for the panel with 6 bit color depth
				per R/G/B)
				11: 2 bit dithering (for the panel with 6 bit color depth
				per
DITHER_FDBK_ON	x05[1]	0	W	The error due to resolution change is fed back for
				dithering
				0: feedback path is disconnected.
				1: feedback path is connected for dithering.

Model No.: LCT-17HT

Function	Addr.(h)	Default	R/W	Description
		Value		
DITHER_RNG	x0B[5:4]	00	W	DITHER RNG ON and choices.
				00: RNG off
				01: RNG 10
				10: RNG 12
				11: RNG 16
DITHER_RNG_RESET	x0F[4:3]	00	W	RNG reset selection when dithering is used.
				00: No reset at all after system power-on reset.
				01: RNG reset every VS.
				10: RNG reset every 4 VS.
				11: RNG reset every 16 VS.
				NOTE: Programming of RNG or FDBK_ON
				(feedback path is connected) can be found at
				OUTCTR2 and MISCTR1.
DITHER_TIME	x0F[1]	0	W	Dithering at spatial or time domain.
				0: Dithering will be performed in spatial domain.
				Programming of RNG or FDBK_ON (feedback
				path is connected) can be found at OUTCTR2
				and MISCTR1.
				1: Dithering will be performed in time domain.
I_DITHER_ON	x1F[7:6]	00	W	00: no dithering operation for FBC input
				01: Dithering at time domain.
				10: 2 bit dithering at special domain for each R/G/B
				11: 3 bit dithering at special domain for each R/G/B
I_DITHER_RNG	x1F[5:4]	00	W	Dithering operation for FBC input with RNG on and
				choices of cycling.
				00: RNG off
				01: RNG 10
				10: RNG 12
				11: RNG 16
I_DITHER_FDBK_ON	x1F[3]	0	W	The error due to resolution change is fed back for
				dithering operation to FBC input
				0: feedback path is disconnected.
				1: feedback path is connected for dithering.

Model No.: LCT-17HT

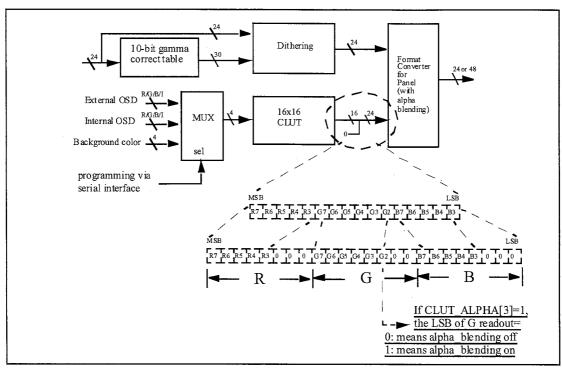
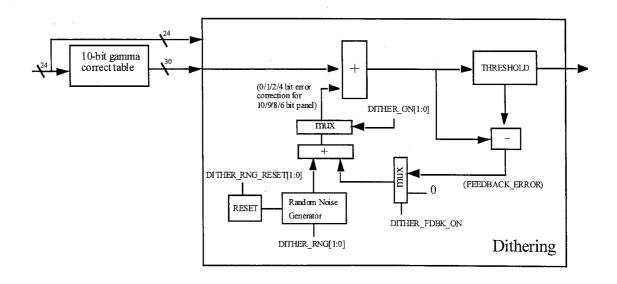



FIGURE 11. Color look-up table for internal, external, and background color

4.11 Dithering and output formatter

The chip supports 8-bit or 6-bit panel using dithering methods as follows:

Model No.: LCT-17HT

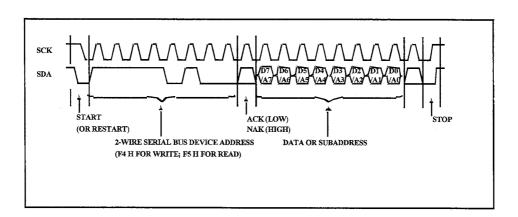
4.12 Power down

The chip enters into power down status by setting POWERDN pins to high. The system returns to normal after POWERDN is set to low.

In power down status, all circuits are set to off except the mode detection circuit which is always working.

4.13 Communication Protocol

The control of this chip can be achieved through two kinds of serial transfer, namely, SPI and 2-wire serial bus interface.

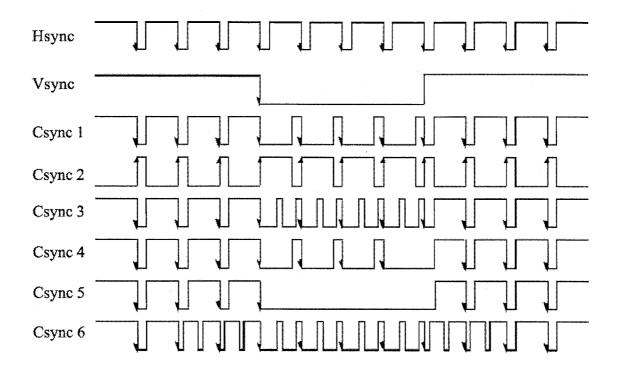

The selection between two kinds of interface can be done automatically by hardware. 2-wire serial bus interface also supports the read back of the some control registers.

The communication between this chip and MCU is performed by 2-wire serial bus interface or SPI interface. The industrial standard 2-wire serial bus interface supports bi-directional transfer (READ and WRITE) with baud rate up to 400 K bps. The 3-wire SPI interface can provide up to 1 M bps baud rate.

4.13.1 2-wire serial bus interface

This chip supports the industrial standard 2-wire serial bus interface, which consists of SDA bi-directional data line and SCL clock line. The 2-wire serial bus slave address of this chip is 111000 (binary). The definition of the basic 2-wire serial bus interface protocol is illustrated as follows. For detailed timing and operation protocol, please refer to the standard 2-wire serial bus specification.

FIGURE 12. The definition of the basic 2-wire serial bus timing protocol



Model No.: LCT-17HT

4.14 Mode detection

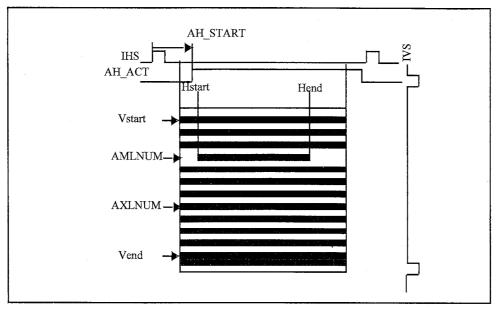
The hardware mode detection circuit has the functions as mode detection blocks of all CRT monitor micro-controllers. For example, it can detect the presences, polarities, and frequencies of HS, VS, and DE. It sends out interrupt at certain programmable events, etc. Besides, there is a Vsync separation that handles six types of Csync inputs (depicted as in the following figure) and generate the corresponding Vsync pulse which can be used as the COAST signal into ADC chips. Generally, these Csync signals come from Hsync plus Vsync or Hsync exclusively OR Vsync or added serration pulse. The Composite sync to coast signal generation is depicted as in the following figure.

4.15 Auto-Adjustment

Searching a line for H-start, and H-end (if the Mth line designation is 00, the entire screen is searched) A segment (including the full-line) of line is frozen and the RGB values can be read by host.

Optimum phase searching is via the calculation of the *sum of difference* of pixels in a window (including the entire screen) which is defined by IIC (for each RGB, or for the sum of RGB, for a frame, or for some frames) The *sum* of pixels on a window (including the entire screen) defined by IIC (for each RGB, or for the sum of RGB, for a frame, or for some frames) will be also performed.

While only *sum of difference* or *sum* operation (selected by IIC programming) is available for intra-frame operation, the *sum of difference* and *sum* operations are simultaneous available for inter-frame operations.


Besides, there are three functions supported by this chip, namely, line frozen, V start-end, and H start-end searching. The procedure are as follows:

- 1. Define a compare window: When the value of color channel R or G or B (designated by AACMP[1:0]) is greater than ARGB_MIN, a valid data is found. We use the parameter AH_START to define the starting location of searching window in horizontal direction. For vertical searching, the start point is the first line counted from the rising edge of IVS.
- 2. Check Vstart and Vend: When one line contain 2 (or greater than 2) valid data. The first valid line is named as Vstart and the last valid line is Vend.
- 3. Check Hstart and Hend: The parameter AMLNUM designates the line to perform the position searching of Hstart and Hend. Hstart is the first valid data and Hend is last valid data on the AMLNUM line. The RGB values of Hstart and Hend are also stored so that the value can be accessed by the host micro-controller.

Model No.: LCT-17HT

FIGURE 13. Parameters definition for auto adjustment.

4. To freeze a line buffer and read the content, one should designate the line address (counted from the first active line) and the starting pixel (counted from the H active region) and then read the same address AFZREAD sequentially.

All data are updated per frame and check continuously.

AW1HSTART

AW2HSTART

AW2HEND

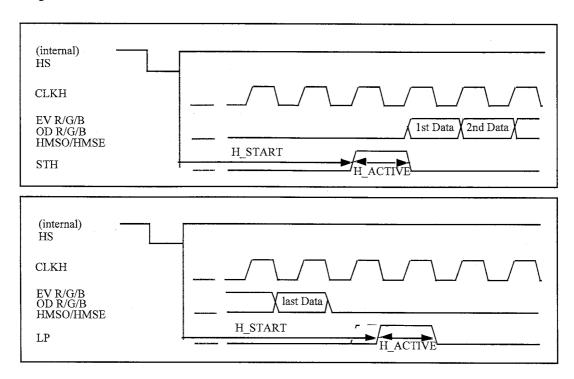
Windows1

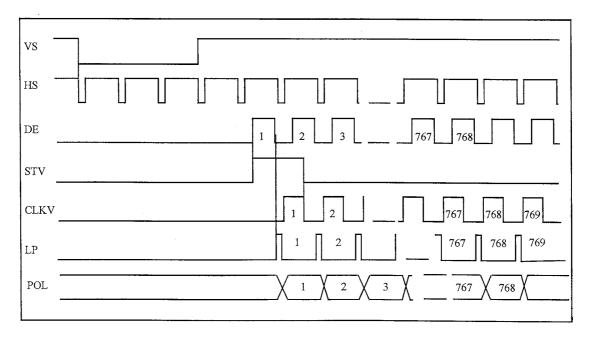
Windows2

Windows2

Windows2

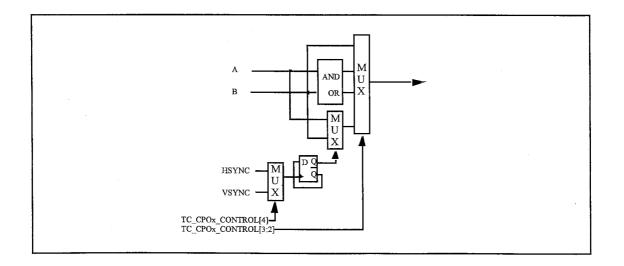
Windows2


FIGURE 14. Inter and intra-frame SOD (sum and sum of difference) calculations


Model No.: LCT-17HT

4.16 Timing control

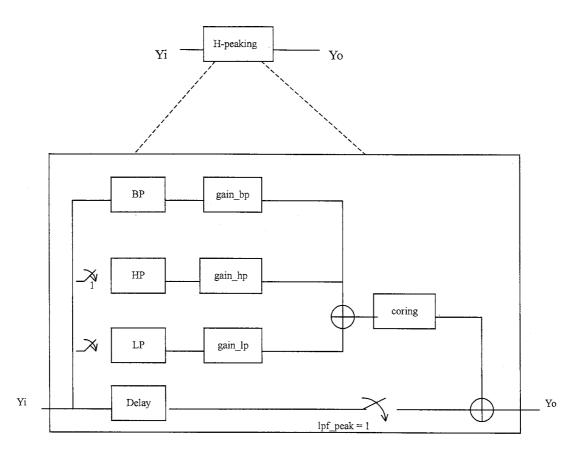
ZiproTC2 (t0949) chip includes a 2nd generation timing control circuit which drives the source and gate drives for 15" TFT-LCD panel. The output pins of this timing controller are shared with the SDRAM control pins. To this, the functions of timing control and SDRAM control are exclusive to each other. The timing control and SDRAM control circuits can both be deactivated.


Model No.: LCT-17HT

TC_CPO0_CONTROL[1:0] 1 TC_GPO0_VSTART C_CPO1_CONTROL[1:0] GPO0 pin TC_GPO0_VEND reset operated on line clock GPO1 pin AND TC_GPO0_HSTART **GPOP** set TC_GPO0_HEND reset HSYNC/VSY GPO0 TC_CPO1_CONTROL[4 generation operated on pixel clock CPO2_CONTROL[1:0] block GPO1 GPO2 pin (The generation of GPO1 is the same as GPO0) generation B GPOP block GPO2 generation (The generation of GPO2 is the same as GPO0) block HSYNC/VSYNC TC_CPO2_CONTROL[4:2]

FIGURE 15. The generation of GPO0, GPO1, and GPO2 signals

FIGURE16 .The GPOP (General Purpose OPeration) function



Model No.: LCT-17HT

4.17 Peaking and noise-reduction

There are two main functions in the peaking block. One is implementing the PEAK function; the other is a programmable Low-Pass Filter (LPF). The object of PEAK function is to emphasis the high frequency part in order to increase the luminance sharpness. The programmable LPF can be used for noise-reduction.

In PEAK mode, Yo =
$$(\text{delay} + \text{BP} + \text{HP})(\text{Yi})$$

In LPF mode, Yo = $(\text{LP} + \text{BP})(\text{Yi})$
where BP = $(1/8)*(1 - Z^{-2})^2$
HP = $(1/16)*(1 - Z^{-1})^4$
LP = $(1/16)*(1 + Z^{-1})^4$

Register for main control in peaking

35h bit 1	peaking enter	0 :enter	1 :bypass
35h bit 0	choose PEAK or LPF	0 :LPF	1 :PEAK

Model No.: LCT-17HT

Register for PEAK

Peaking Control LSB	gain_BP	Peaking Control LSB	gain_HP
(34h) bit [3:0]		(34h) bit [7:4]	
0000	0	0000	0
0001	0.25	0001	0.25
0010	0.5	0010	0.5
0011	0.75	0011	0.75
0100	1	0100	1
0101	1.25	0101	1.25
0110	1.5	0110	1.5
0111	1.75	0111	1.75
1000	2	1000	2
1001	2.25	1001	2.25
1010	2.5	1010	2.5
1011	2.75	1011	2.75
1100	3	1100	3
1101	3.5	1101	3.5
1110	4	1110	4
1111	5	1111	5

Register for LPF

Peaking Control LSB (34h) bit [3:0]	gain_LP
0000	0
0001	1/16
0010	2/16
0011	3/16
0100	4/16
0101	5/16
0110	6/16
0111	7/16
1000	8/16
1001	9/16
1010	10/16
1011	11/16
1100	12/16
1101	13/16
1110	14/16
1111	1

Model No.: LCT-17HT

4.18 The Internal OSD

To program internal OSD, basically, two kinds of data, the data in Display RAM and data in the control registers must be filled via the serial transfer. The relationship between screen management and Display RAM is illustrated by a following figure, in the figure two OSD menu segments are stored in the Display RAM.

However, the menu stored from Row 4 to Row 8 are displayed. The content and characteristics of the displayed menu are defined by the data in the Display RAM. The starting row, which determine the selected menu segment, and the horizontal, vertical display positions are all programmed by the control registers.

4.18.1 The data structure in Display RAM

Basically, there are two kinds of data stored in the Display RAM:

1. the ROW attribute code: The ROW attribute for each row is always defined in the first column of each row. The row basis attributes are determined by the filled data, although the first column is invisible on the screen. The ROW attribute code consists of 16 bits, which are divided into 7 fields.

2.the displayed Character Font code: The data filled from Column 1 to Column 31 of each row (Row 0 to Row 15) are all treated as the Displayed Character Font code. So, the number of visible character locations will be 496 (16 X 31). The Character Font code consists of 2 fields. Font code field is represented by upper nibble (Bit 8 to Bit 15). The feature of each character font is decided by the lower nibble (Bit 0 to Bit 7), which forms the Character attribute field. However, the definition of the Character attribute field might vary with the different types of character font. There are three kinds of Character Fonts, Normal Character Font, Graphic Character Font and SPace font (code FF H is reserved as SP font code).

4.18.1.1 The ROW ATTRIBUTE

	ROW Attribute														
Bit15	Bit15 Bit14Bit13Bit12Bit11Bit10Bit9Bit8 Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0														
Back I	ck I Row Spacing Program								СН	CW	Shac	low	mod	e	EOD
	Character Height														

As shown in above table, there are 7 fields about the row based display attributes. Note the ROW attribute is always defined in the first column of each ROW (i.e. Display RAM location, 32XN, N = .15). The following sections will explain the details of each field.

Model No.: LCT-17HT

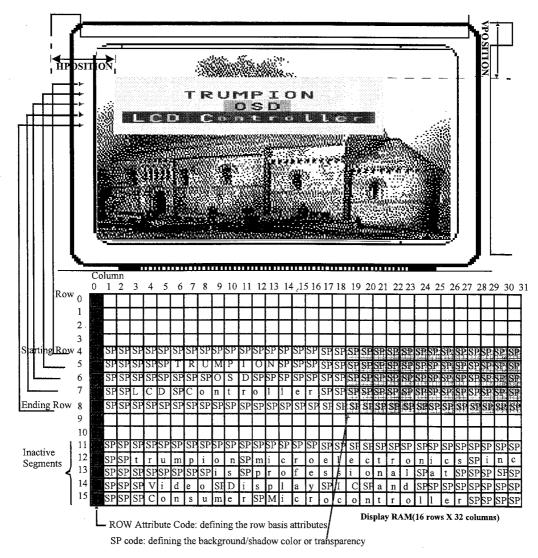


FIGURE17. The mapping between screen management and the Display RAM

4.18.1.1.1 The End of Display

	ROW Attribute													
Bit15	Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0													Bit0
Back	Back Row Spacing Programmable							СН	CW	Shado	ow mo	de		EOD
I Character Height														

This field. ending of display (EOD), consists 1 bit, Bit 0. The bit value

0: stands for the continuation of the display data retrieved from the following rows in the Display RAM.

1: stands for the ending of data accessing from the next row in the Display RAM. The current row will be the final visible row on the screen.

For the example shown upon, EOD bits of row 4, 5, 6 and 7 must be 0 and EOD bit for row 8 should be 1 to end the display.

Model No.: LCT-17HT

4.18.1.1.2 The Shadow Mode

	ROW Attribute														
Bit15	Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0														
Back	Back Row Spacing Programmable							СН	CW	Shad	ow m	ode		EOD	
I	I Character Height														

To enhance the appearance of the displayed character and accordingly highlight the self style of the end product, versatile shadowing modes are provided for each row. Thus, each displayed row can have different shadowing feature. *It is row basis feature*. This field is formed by 4 bits, Bit 1 to Bit 4. The shadow way associated with the corresponding code and example is illustrated in the following table.

SHADOW MODE	REPRESENTATIVE CODE(B4 B3 B2 B1) _B	EXAMPLE PATTERN
South shadow	(0000) _b	A
West-South shadow	(0000) _b	A
West shadow	(0010) _b	A
West-North shadow	(0011) _b	A
North shadow	(0100) _b	A

Model No.: LCT-17HT

East-North shadow	(0101) _b	
East shadow	(0110) _b	
East-South shadow	(0111) _b	
Bordering shadow	(1000) _b	
Boxing I	(1001) _b	SP coc
Normal	(1010) _b	_
Boxing II	(1011) _b	SP code

In principle, the shadow modes can be classified into four categories:

- ➤ Code 0000b to 0111b, and 1000b: The meaning of shadow is self-explained for this category except 1000b, bordering mode. It is assumed the sunlight coming from 8 directions, and accordingly generates shadow depending on the incident light. For bordering mode, the character font itself is surrounded by the shadow. Note the color of the shadow is word basis and decided by last SP code or SPdef control register (if no SP code is put in front of the concerned character)
- Code 1001b: This code stands for boxing mode. It is meant the character font is underlaid by the programmed background color. The background color is also defined by SP code or SPdef control register on the basis of word. Given by the flexibility of this mode, associated with SP code feature, it is already sufficient to create the window-like menu. In this mode, the background color defined by SP code takes effect from the left border of this SP code.

Model No.: LCT-17HT

- > Code 1010b: The normal character font without any shadow.
- ➤ c Code 1011b: This code stands for another type of boxing mode. It is similar to above boxing mode. However, the background color defined by SP code just takes effect from the right border of this SP code.

4.18.1.1.3 The Double width and /or Double Height

	ROW Attribute														
Bit15	Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0														
Back Row Spacing Programmable								СН	CW	Shado	ow mo	ode		EOD	
I Character Height															

Two fields, CH and CW, are explained in this section. Despite of OSD dot rate synthesis for Character width, the line insertion for Character height, this is the most straightforward way to adjust the dimension of displayed menu by doubling the width or the height respectively.

The field. CW, consists of 1 bit, Bit 5. The bit value

0: stands for the normal character width, 12 OSD dots.

1: stands for the double size of character width, 24 OSD dots.

The field. CH, consists of 1 bit, Bit 6. The bit value

0: stands for the normal character height, (18 + inserted) scanning lines.

1: stands for the double size of character height, 2 X (18 + inserted) scanning lines.

FIGURE18. Four kinds of row dimension programmed by CH and CW

ROW Attribute

FIGURE18. Four kinds of row dimension programmed by CH and CW

Model No.: LCT-17HT

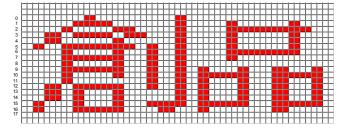
4.18.1.1.4 The Programmable Character Height

	ROW Attribute														
Bit15	Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0														
Back	Back Row Spacing Programmable								СН	CW	Shado	ow mo	de		EOD
I	I Character Height														

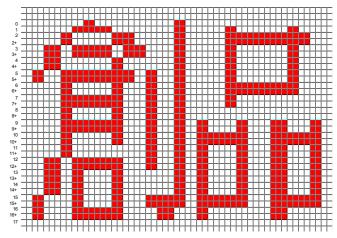
This field, Character Height Programming field, consists of 4 bits, Bit 7 to Bit 10. It provides more flexibility to adjust the vertical height of the displayed character/menu by BRM algorithm. Normally, the width of OSD can be well adjusted by varying the dot clock. However, the height of OSD can not be tuned as desired because it is limited to the number of scan line in the display system. The height of the character (accordingly, the height of OSD menu) is in inverse proportion to the number of the scan line per frame. To keep the compatibility, the height of OSD can be compensated by insertion of certain number of horizontal scan lines for each character in the same row.

In total, there are 15 possible line insertion encoded by this field. The following table illustrates the repeated lines for each corresponding code. This feature associated with CH bit and Row Spacing field (see next section) will provide variable character height from 5 scanning lines to 66 scanning lines.

Model No.: LCT-17HT



Representative	Repeated line number:	Spacing No
code	Normal Height(CH=0)/Double Height (CH=1)	inserted lins
(b10 b9 b8 b7) b		CH=0 / CH=1
0 0 0 0	None/None	0/0
0 0 0 1	9/19, 20	1/2
0 0 1 0	5, 13/11, 12, 27, 28	2/4
0 1 0 0	3, 7, 11, 15/7, 8, 15, 16, 23, 24, 31, 32	4/8
1 0 0 0	2, 4, 6, 8, 10, 12, 14, 16/5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29,	8/16
	30, 33, 34	
0 0 1 1	5, 9, 13/11, 12,19, 20, 27, 28	3/6
0 1 0 1	3, 7, 9, 11, 15/7, 8, 15, 16, 19, 20, 23, 24, 31, 32	5/10
0 1 1 0	3, 5, 7, 11, 13, 15/7, 8, 11, 12, 15, 16, 23, 24, 27, 28, 31, 32 6/12	
0 1 1 1	3, 5, 7, 9, 11, 13, 15/7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28,31,	7/14
	32	
1 0 0 1	2, 4, 6, 8, 9, 10, 12, 14, 16/5, 6, 9, 10, 13, 14, 17, 18, 19, 20,21, 22,	9/18
	25, 26, 29, 30, 33, 34	
1 0 1 0	2, 4, 5, 6, 8, 10, 12, 13, 14, 16/5, 6, 9, 10, 11, 12, 13, 14, 17,18, 21,	10/20
	22, 25, 26, 27, 28, 29, 30, 33, 34	
1 0 1 1	2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16/5, 6, 9, 10, 11, 12, 13, 14, 17, 18,	11/22
	19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 33, 34	


Representative	Repeated line number:Normal Height(CH=0)/Double Height	No. of
code	(CH=1)	inserted lines
(b10 b9 b8 b7) b		CH=0 / CH=1
1 1 0 0	2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16/5, 6, 7, 8, 9, 10, 13, 14, 15, 16,	12/24
	17, 18, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34	
1 1 0 1	2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16/5, 6, 7, 8, 9, 10, 13, 14, 15,	13/26
	16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34	
1 1 1 0	2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16/5, 6, 7, 8, 9, 10, 11, 12,	14/28
	13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	
	33, 34	
1 1 1 1	2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16/5, 6, 7, 8, 9, 10, 11, 12,	15/30
	13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,	
	31, 32, 33, 34	

One example which shows the effect of the line interpolation is demonstrated in figure 19

This pattern is an example of character combination;
It is formed by 5 characters combined in the horizontal direction.

B10 B9 B8 B7 1 1 1 1 Based on this configuration

15 lines are inserted in the vertical direction.

FIGURE19. The example of line insertion

4.18.1.1.5 The Row Spacing 4.18.1.1.5 The Row Spacing

ROW Attribute

	ROW Attribute													
Bit15	Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0													
Back	Back Row Spacing			Programmable			СН	CW	Shado	ow mo	de	EOD		
I	Ch					Character Height								

This field. Row Spacing, consists 4 bits, Bit 11, Bit12, Bit13 and Bit 14. The 16 possible row spacing are shown in the following table.

The first four codes are mainly for scaling down. The current displayed row can be reduced to 1/4, $\frac{1}{2}$ and 3/4 of the original height. Following figure implies two possible applications for this feature. In the middle pattern, it is showing one spacing row with 5 scanning lines (thus, (Bit14, Bit13, Bit12, Bit11) = (0, 0, 1, 1)) are inserted between Row N and Row N+2. The right most pattern demonstrates the underline, at Row N+1, is added below the normal character font, A, located at Row N.

The remaining codes represent the lines inserted between two display rows. This feature can be used to adjust the vertical height, aspect ratio and accordingly avoid expansion distortion. The window, fade in/out feature remain valid for row spacing.

Model No.: LCT-17HT

Representative	Repeated line number: Normal Height(CH=0)/Double	Spacing No. CH=0 /
code	Height (CH=1)	CH=1
(b10 b9 b8 b7) b		
0 0 0 0	0 - 17 / 0 - 35 (No reduction)	18/36
0 0 0 1	0 - 4 / 0 - 9 (Upper 3/4 part displayed)	13/26
0 0 1 0	0 - 8 / 0 - 17 (Upper 1/2 part displayed)	9/18
0 0 1 1	0 - 12 / 0 - 25 (Upper 1/4 part displayed)	5/10
0 1 0 0	4 lines inserted between two rows	4
0 1 0 1	5 lines inserted between two rows	5
0 1 1 0	6 lines inserted between two rows	6
0 1 1 1	7 lines inserted between two rows	7
1 0 0 0	8 lines inserted between two rows	8
1 0 0 1	9 lines inserted between two rows	9
1 0 1 0	10 lines inserted between two rows	10
1011	11 lines inserted between two rows	11
1 1 0 0	12 lines inserted between two rows	12
1 1 0 1	13 lines inserted between two rows	13
1110	14 lines inserted between two rows	14
1111	15 lines inserted between two rows	15

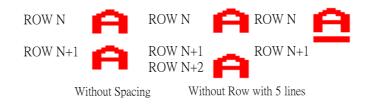


FIGURE 20. Spacing between two displayed rows and underline effect

4.18.1.1.6 The Row Spacing

	ROW Attribute														
Bit15	Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0												Bit0		
Back I	Back I Row Spacing Pr				Progra	Programmable			СН	CW	Shado	ow mo	de		EOD
	Character Height														

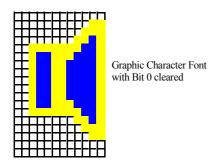
This field, intensity bit for background color (Back I) for current row, consists 1 bit, Bit 15. The bit value

- 0: The background color defined by the character attribute (Bit7, Bit6, Bit5) is not intensified.
- 1: The background color defined by the character attribute (Bit7, Bit6, Bit5) is intensified.

Accordingly, in term of row basis, the background colors can be extended to 16 colors.

4.18.2 CHARACTER FONT CODE

Bit15 Bit14 Bit13 Bit12 Bit11 Bit10	Bit9 Bit8 Bit7	Bit6 B	it5 I	Bit4	Bit3	Bit2	Bit1	Bit0
Font code attribute								
Ad7 Ad6 Ad5 Ad4 Ad3 Ad2	Ad1 Ad0 BR	BG B	B	3	G	В	I	Blink


The Normal Character Font (NCF) and the Graphic Character Font (GCF) are both encoded by 8 bits (Font code field; Bit 8 to Bit 15). Each Character Font occupies 20 words to form one Character Font. In addition to 18 words (12 bits per word), 2 more words are added to keep the data of last row and look ahead the data of next row. Accordingly, even for the case of vertical combination of two characters, it is still possible to render the complete shadow and bordering modes.

The characteristics of the Normal Character Font (NCF) is specified by Font Code Attribute. Bit 7 to Bit 5, associated with the intensity bit determine the background color underneath the foreground dot. The foreground color of this character font is defined by the R, G, B, I bit, Bit 4 to Bit 1 from the Font Code Attribute. A character basis blinking is achieved by Bit 0, blink bit. There are two blinking rates programmed by Bit 2, CF, in the control register, OSDCTRL.

The character font with address greater than value, predefined by the register, Graphic_start, is treated as Graphic Character Font or Multi-Color Font. Accordingly, the font number of Graphic Character Font is not fixed and dependent of the customer need. Nevertheless, font code address, FFH (i.e. 11111111b) is reserved for the Space code. The Graphic Character Font will consume three times of words, since R, G, for each OSD dot will be defined in separate Character Font domain. Note the three consecutive font address will be bound to this Graphic Character Font. For the ROM coding scheme of the graphic character font. Regarding character attribute of the graphic font, bit 2 to bit 7 are meaningless. If Bit 1 is set, the undefined dot (i.e. 000b) is filled by background color, which is specified by last Space code. Bit 0, Blink, is still effective in the programmed blinking rate. The background color underneath the multi-color dot is stationary and not blinked. The following diagram illustrates Graphic Character Font in two modes, decided by the setting of Bit 1.

Model No.: LCT-17HT

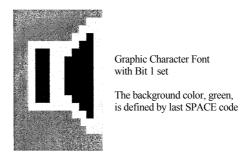


FIGURE 21. Two types of the Graphic Character Font; GCF with Background color and GCF without Background color

4.18.3 THE SPACE CODE

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	Reserved SP code (FF H)									Spa	ice co	de attr	ibute		
1	1	1	1	1	1	1	1	-	_	-	R	G	В	I	SPT

The SPace code is in fact a special case of Character Font. One dedicated font code, FF H, is reserved as the Space code. Space code attribute (Bit 0 to Bit 4) defines the functioning of the SPace code. However, depending on the setting of Row Attribute, the functioning of SPace code could be different. Typically, there are following cases:

➤ If one of shadow codes, 0000b to 0111b, and 1000b, the SPace code is used to change the color of shadow. The shadow color is encoded by R, G, B and I bit. The domain of SPace code, itself is transparent. Therefore, Bit SPT is meaningless in this case. One example for this case is shown below.

FIGURE 22.SPace code is used to change the shadow color

➤ If the boxing mode, code 1001b, or code 1011b, is chosen from the shadow mode, then the SPace code is used to change the background color, which is defined by R, G, B and I bit. In this case, the background color is rendered immediately from the domain of the SPace code itself (in the case of 1001b) or rendered right after the domain of the SPace code (in the case of 1011b). However, if SPT bit is set, the background color will disappear and become transparent. If the color change is expected in the midway instead of the starting of SPcode domain, then, one bit, Split, in OSDCTRL register must be set illustrates the situation mentioned for this case.

Model No.: LCT-17HT

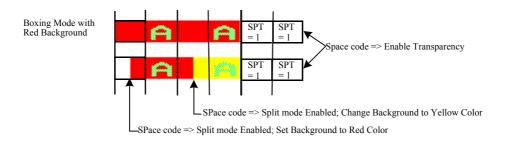


FIGURE 23. SPace code is used to change the background color in boxing mode and used for

If the code, 1010b, (i.e. the normal mode) is selected, SPcode is meaningless in this case.

4.18.4 Font ROM and RAM Code Generation

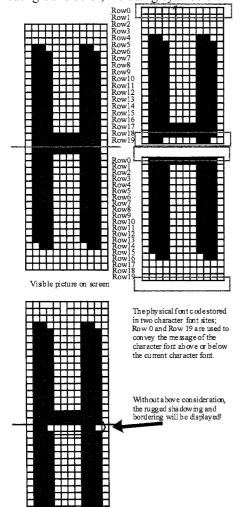
The ZiproSX OSD contains a font ROM and a font RAM. The ROM contains 192 fixed character code and the RAM provides 64 character space for downloadable fonts for the customer's special requirement. The character and graphic font (multi-color font) can both download to the font RAM. To satisfy different application needs, the number of the character and graphic character fonts can be customized. The normal character font and the graphic character font share the same character RAM. However, note the RAM space required by the graphic character font is three times of the normal character font. In other words, every graphic character font will occupy the space of three normal character fonts. The trade-off is determined by the application. The location range of the graphic character font is defined by registers Graphic_start (3EH) and Graphic_end (3FH) and each graphic font is formed with 3 consecutive font sites.

4.18.4.1 NORMAL CHARACTER FONT CODE

The visible character matrix is 12 columns by 18 rows. However, in order to keep the completeness o shadowing/bordering effect in the case of vertical combination, two additional rows are provided. It is illustrated by the following diagram. Normally, Row 0 and Row 19 are filled with 0. However, it is not necessary for users to take care of such subtle issues. A paint brush like font generator is provided to generate font code.

4.18.4.2 GRAPHIC CHARACTER FONT CODE

The graphic character font can be placed from the address pointed by Graphic_start in the RAM space with three consecutive font sites. The paint brush like font generator can help the user to generate the graphic character font. The following figure demonstrates the graphic character font coding scheme, although it is transparent to the user.


Each dot in the graphic character font is encoded by three bits, which are corresponding to R, G, B colors. The color definition by 3 bits (R, G, B) is shown in the following table:

Model No.: LCT-17HT

COLOR	BIT2 (R)	BIT1 (G)	BITO (B)
Background Color	0	0	0
Blue	0	0	1
Green	0	1	0
Black	0	1	1
Red	1	0	0
Magenta	1	0	1
Yellow	1	1	0
White	1	1	1

Although the cyan color is not defined, there are two ways to render the cyan color. The window with cyan color underline the color font can make the dots with 000b become cyan dots. In fact, 16 colors can be applied to the window. So, it is also possible to render other colors for dot with 000b code. The second approach is enabling Bit 1, I, of character attribute. Then the dot of graphic character font with 000b can be filled by the background color, which is defined by last SPACE code. There are 16 colors for the background color, including cyan color.

Normal Character Font Code
With Vertical Combination

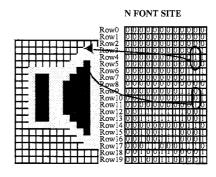


FIGURE 24. The graphic character font and the corresponding font code scheme

Model No.: LCT-17HT

5.0 REGISTER DEFINITION

The 2-wire serial bus slave address of this chip is 1111000 (bin) (or F0 hex):

TABLE 20. PANORAMA OF SUB-ADDRESS REGISTER

	LOW	NIBB	LE O	F SUB.	ADDF	RESS											
HI	Add	Х0Н	X1H	X2H	ХЗН	X4H	X5H	Х6Н	Х7Н	X8H	Х9Н	XAH	XBH	ХСН	XDH	XEH	XFH
GH	r(hex)																
NI	0XH	ID_	IN_C	TR	OUT	CTR		IN_	IN_	IN_	OUT_	MISC	ΓR	STA	STA	INT	MIS
BB		VER						CTR2	CTR	CTR4	CTR3			TUS0	TUS1	CTR	CTR2
LE									3								
	1XH	INPU'	NPUT WINDOW PARAMETERS											IVHR	IVS	IN_	
															EF_D	_DE	CTR
														E	LAY	5	
														LAY			
	2XH	AUTO) ADJ	UST PA	ARAN	IETER:	S										
	3XH					PEAK	ING	OUTF	UT W	VINDO	W PAR	AMET	ERS				
	4XH	BACK	GRO	UND V	VIND	OW PA	RAME	TERS		DE DI	M WIN	DOW F	PARAM	ETERS			
	5XH	PANE	L BA	CKGR	OUNE)		OSD I	PARA	METE	RS				PWM		
		PARA	METI	ERS													
	6XH	SCALING PARAMETERS															
	7XH	SCAL	ING			AUTO) ADJU	JST			PWM	MISC		IHV_	DELAY4WRAP		
		PARA	METI	ERS		PARA	METE	RS				(CLAN	MP)				
	8XH	AUTC) ADJ	UST PA	ARAN	IETER:	S									1	
	9XH	AUTC) ADJ	UST PA	ARAN	IETER:	S			AUTO	ADJUS	T PAR	AMETE	ERS	LB_MAR GIN		
	AXH	ICLK/	PCLK	MEAS	SURE	PARA	METEF	RS (It v	vas		PX_AS	AUTO	ADJUS	ST		BRIG	HTNE
		for AU	JTO A	DJUS	Γ)						_	PARA	METER	S		SS,	
											ALINE	,				CON	TRAST
	BXH	BRIG	HTNE	SS, CC)NTR	AST, G	AMMA	, CLU	T, and	l		PLL P	ARAMI	ETERS			16:9
				ENDIN	IG												
	СХН	DEno_	_perV	OSI freq		N/OUT	HS/VS	S PARA	AMET	TERS		OSD P	ARAM	ETERS			
	DXH	HART)WAR			ЕТЕСТО	OR PAI	RAME:	TERS			<u> </u>	KEYS	TONE			
									- 2100					METER			
	EXH	Frame	buffe	r contro	ol and	related											
	FXH	JPEG	WRIT	E, 16:9	ZOO	MING,	DEINT	TERLA	CE, a	nd PW	MR0/B0)					

Model No.: LCT-17HT

TABLE 21. I/O CONTROL REGISTER

REGISTER	Addr	D7	D6	D5	D4	D3	D2	D1	D0
FUNCTION	(hex)								
Chip ID and	00H								
Version									
(ID_VER)									
Input Control	01H	DIS_IHSPOL	IHS_POL	IRGB24AB	DEINTERL	DE_ONLY	DE_DELA	DE_DELA	DE_DELA
Register0	(R/W)				ACE_ON		Y(2)	Y(1)	Y(0)
(INCTR0)									
Input Control	02H	ICLK_INV	ODD_POL	INCODE	YUVF	IRGB48(1)	LBRV	IRGB24	IRGBEN
Register1	(R/W)								
(INCTR1)									
Output Control	03H	RELD_FH	DITHER_O	DITHER_	PCLK_INV	PCLK_OP	PCLK_OP	PCLK_OP	PRGB48
Register0	(R/W)	ADR	N(1)	O N(0)	/PHCLK_I	(2)	(1)	(0)	
(OUTCTR0)					NV				
Output Control	04H	PVS_POL	PHS_POL	POUT_OF	BKFRC	BKCOL(3)	BKCOL	BKCOL	BKCOL
Register 1	(R/W)			F			(2)	(1)	(0)
(OUTCTR1)									
Output Control	05H	DEINTERL	DEINTERL	HUE_S	PCLKI	OVS_	PDE_POL	DITHER_	PABCLK_
Register 2	(R/W)	ACE_AUT	ACE_AUT O	AT_ADJU	N_EXT	VACTIVE		FDBK_ON	EN
(OUTCTR2)		O [1]	[0]	S					
				T					
Input Control	06H	IYUV444_	IYUV4	XTAL_PU	XTAL_PU	IVS_SELE CT	IVS2PVS	IVS_DIV_2	FIELD_DE
Register2	(R/W)	PEG [1]	44-JPE	LSE_SEL[LSE_SEL[0)			TECT_IN
(INCTR2)			G [0]	1]]				
Input Control	07H	USE_IHRE F	USE_IVRE F	IH_INV4FI	IV_INV4FI	ICLK_DEL	ICLK_DEL	ICLK_DEL	FID_INV_S
Register3	(R/W)			D	D	AY[2]	AY[1]	AY[0]	CALER
(INCTR3)									
Input Control	08H	IA_A2POR	IB_B2POR T	ICLKDIV2	IHVSA_B	IBCLK_DE	IBCLK_DE	IBCLK_DE	FORCE_UP
Register4	(R/W)	Т		_EN		LAY[2]	LAY[1]	LAY[0]	_DN
(INCTR4)									
Output Control	09H	FID32_CL	FID32_	PCLKEQI	NTSC_HD	RST_GT_ADR	H_FLIP	PWMR0ACT	PWMB0AC
Register3	(R/W)	AMP[1]	CLAMP[1]	CLK	TV				Т
(OUTCTR3)									
Misc. Control	0AH	GAMMAUSE	DEINT_OFIF_	VHSYN_S	FREEZE	EOSD_EN	EOSDFR	BYPASS	DE_DIM_E
Register	(R/W)		32PD	EL –					 N
0(MISCTR0)									

Model No.: LCT-17HT

REGISTER	Addr	D 7	D6	D5	D4	D3	D2	D1	D0
FUNCTION	(hex)								
Misc. Control	0BH	MATRIX_	INVMATRI	DITHER_R	DITH	EOSD_SY	CLAMP_O	BACLK_S	IIC_ACT_
Register	(R/W)	ON	X_ON	NG(1)	ER_RNG(0)	NSEL	FF	EL	DIRECT
1(MISCTR1)								ADCLKEN	
Status Register	0СН								
(STATUS0)	(R)								
Status Register	0DH	CINEMA	MOTION_				ASOD_RD		AML_RDY
(STATUS1)	(R)		VIDEO				Y		
Interrupt Control	0EH	INTEN							
Register	(W)								
(INTCTR)									
Misc. Control	0FH	OVCLK_D	OVCLK_D	OVCLK_D	DITHER_R	DITHER_R	VIDEO_F	DITHER_T	RGB12_DE
Register2	(R/W)	ELAY[2]	ELAY[1]	ELAY[0]	NG_RESET	NG_RESET	REERUN	IME	_DELAY
(MISCTR2)					(1)	(0)			
Input Control	1FH	I_DITHER_	I_DITHER_	I_DITHER_	I_DITHER_	I_DITHER_	HMD_VF_	HMD_VF_	HS_EQ_HR
Register5	(R/W)	ON (1)	ON (0)	RNG (1)	RNG (0)	FDBK_ON	CNT1	CNT0	EF
(INCTR5)									
SOD Control	77H	SOD_FRAM							SOD_INTR
Register	(R/W)	E_NO[3:0]							A
(SODCTR)									
SOD Mask	78H	SOD_MAS					SOD_R_M	SOD_G_M	SOD_B_MA
Register	(R/W)	K_BIT[2:0]					ASK	ASK	SK
(SODMASK)									
OSD control	СЕН	VITOREND	VINT	TEST0	ETF	R	G	В	I
register0	(R/W)	L							
(OSDCTR0)									
OSD control	CFH	SPLIT	HTONE	MONITOR	НР	VP	BP	BF	IODS_EN
register1	(R/W)								
(OSDCTR1)									

ID_VER (Chip	Default		
7-0	ID_VER	01000001 (bin, for t0944/t0946/t0947/t0949)	41
7-0	ID_VER	01010001 (bin, for ZiproSO/t0959)	51

INC	TRO (Input C	onTrol Register 0, 01H)	Default
7	DIS_IHSPOL	0: Auto detecting function of the polarity of HS of input video will be checked automatically	0
		Auto detecting function of the polarity of HS of input video will be disabled	
		Note: The polarity of VS of input video will be checked automatically	
6	IHS_POL	0: The rising edge of input HS will be used as the start of the sync pulse 1: The falling edge of input HS will be used as the start of the sync	0
5	IRGB24AB	pulse 0: Input RGB 24-bit data use A port 1: Input RGB 24-bit data use B port	0
4	DEINTERLA CE_ON	0: Deinterlace function off 1: Deinterlace function on	0
		Note: Panel Vertical Active EVEN Start, Panel Vertical Active ODD Start, Panel Vertical EVEN Total, and Panel Vertical ODD Total should be defined before Deinterlace function set to on	
3	DE_ON	O: The H and V sync signals are used for synchronizing the display data. 1: The DE (Display Enable) signal is used for synchronizing the display data.	0
2-0	DE_DELAY [2:0]	DE signal can be delayed or advanced for the matching of display data vs enable signal. This signal is valid only if DE_ON=1. 0xx: No delay (x means do not care) 100: -2 clock delay. 101: -1 clock delay. 110: +2 clock delay.	000

INC	TR1 (Input Con	Trol Register 1, 02H) Default	Default
7	INCLK_INV	INCLK invert enable	0
		0: normal input clock	
		1: invert input clock	
6	ODD_POL	ODD indicate polarity (inside use only)	0
		0: 1st field is ODD and ODD is ACTIVE HIGH	
		1: 1st field is ODD and ODD is ACTIVE LOW	
5	INCODE	0: input video code is binary offset	0
		1: input video code is 2 complement	
4	YUVF	0: 16 bit YUV422	0
		1: 8 bit YUV422 (CCIR 656)	
3		reserved	0
2	LBRV	Line Buffer Reset Value Select	0
		0 : the line buffers are reset to x000000	
		1 : the line buffers are reset to x008080	
1	IRGB24	1: RGB 24 bits input	1
		Note: t0947/0949 can accept 24-bit or 12-bit input. But IRGB24	
		should be set to 1 always.	
0	IRGBEN	0: YUV input	1
		1: RGB input	
INC	CTR2 (INput C	onTrol Register 2) has the sub-adress at 06H.	

OUT	CTR0		Default
(Out	(Output ConTrol Register 0, 03H) (This register can be read and write)		
7	RELD_FHAD Reload Freeze Address		0
	R	The starting address of frozen line which will be reloaded if a	
		low to high transient detected. Please refer to the register 84 and	
		85 for more detail.	
6:5	DITHER_ON	00: no dithering (for the panel with 8 bit color depth per R/G/B)	00
	(1:0)	01: 1 bit dithering (for the panel with 7 bit color depth per	
		R/G/B)	
		10: 2 bit dithering (for the panel with 6 bit color depth per	
		R/G/B)	
		11: 2 bit dithering (for the panel with 6 bit color depth per	
		R/G/B)	
4	PHCLK_INV	0: Normal PHCLK clock output to panel	1
		1: Inverted PHCLK clock output to panel	
		(The relationship of PHCLK and PCLK is also defined by	
		PHCLK_OP(1:0) and PRGB48)	

3:1	PHCLK_OP	Phase deviation of PHCLK with respect to PCLK	000
	(2:0)	000: No delay 001: Delay 1 unit	
		010: Delay 2 units 011: Delay 3 units	
		100: Delay 4 units 101: Delay 5 units	
		110: Delay 6 units 111: Delay 7 units	
		(The relationship of PHCLK and PCLK is also defined by	
		PHCLK_INV and PRGB48).	
0	PRGB48	0: Single pixel output per panel clock (the frequency of PHCLK	1
		is equal to PCLK, the phase is defined by PHCLK_INV and	
		PHCLK_OP(1:0))	
		1: Double pixel output per panel clock (the frequency of PHCLK	
		is equal to half of PCLK, the phase is defined by PHCLK_INV	
		and PHCLK_OP(1:0))	

OUT	CTR1 (OUTp	ut ConTrol Register 1, 04H)	Default
7	PVS_POL	PVS output polarity (inside use active High)	0
		0: Negative polarity (active Low)	
		1: Positive polarity (active High)	
6	PHS_POL	PHS output polarity (inside use active High)	0
		0: Negative polarity (active Low)	
		1: Positive polarity (active High)	
5	POUT_OFF	Panel output control & data disable	1
		0: PHS, PVS,DEN,PRED/GRN/BLU, and P2RED/GRN/BLU	
		output are enabled. (or PARED/GRN/BLU or	
		PBRED/GRN/BLU in ZiproSO)	
		1: PHS, PVS,DEN,PRED/GRN/BLU, and P2RED/GRN/BLU	
		output are set to weak pull low.(or PARED/GRN/BLU or	
		PBRED/GRN/BLU in ZiproSO)	
4	BKFRC	Panel output Force to Background color	0
		0: Normal Panel output	
		1: Output Panel is forced to Background color, the color is	
		selected by BKCOL[3:0]	
3:0	BKCOL[3:0]	Panel output Background color select signals.	000
		These signals share the look-up table with OSD to generate	
		colors.	

Model No.: LCT-17HT Version: 1.0

OU'	TCTR2 (OUT _I	put ConTrol register 2, 05H)	Default
7-6	DEINTERLA	The way deinterlacing circuit will work.	00
	CE_AUTO	00: Deinterlacing circuit is always off.	
	[1:0]	01: Deinterlacing circuit is always on.	
		1x: reserved	
5	Reserved		0
4	PCLKIN_	The way PCLK, panel clock, is generated.	0
	EXT	0: PCLK is generated by internal PLL.	
		1: PCLK is fed from PCLKIN pin (by external source).	
3	OVS_VACT	The OSD VS output is generated using	0
	VE	0: Overlay VS as in Zurac1.	
		1: Vertical display active signal.	
2	PDE_POL	0: active High for display data enable output to panel	0
		1: active Low for display data enable output to panel	
1	DITHER_	The error due to resolution change is fed back for dithering	0
	FDBK_ON	0: feedback path is disconnected.	
		1: feedback path is connected for dithering.	
0	Reserved		

INC	TR2 (Input Co	onTrol Register 2, 06H)	Default
7-6	IYUV444_	Additional input modes. The default mode is 00 for Zurac2	00
	JPEG[1:0]	compatible.	
		00: RGB input or 8-bit YUV422 or 16-bit YUV422 input modes as	
		defined by INCTR1 (02hex)	
		01: input is YUV444.	
		10: JPEG write modes or segment write via 8-bit YUV422 and HREF	
		input pins	
		11: RGB12.	
		NOTE: RGB12 bus uses the IRED[7:0] and IGRN[7:4] pins. The bus	
		will be expanded to 24 bits RGB internally.	
5-4	XTAL_PULS	Crystal clock pulse selection. This clock pulse will then be counted	00
	E_SEL[1:0]	by ICLK and PCLK.	
		00: 1024 crystal clocks.	
		01: 2048 crystal clocks.	
		10: 3072 crystal clocks.	
		11: 4096 crystal clocks.	
3	IVS_SELEC	Input VS source selection.	0
	Т	0: from external IVS,	
		1: from internal mode detection circuit.	

Model No.: LCT-17HT Version: 1.0

2	IVS2PVS	PVS generation using the rising/falling edge of IVS (For the case	0
		PVS is generated by free-running, this control bit is invalid)	
		0: falling edge. 1: rising edge.	
1	IVS_DIV_2	Input VS frequency will be divided by 1 (no changed) or 2.	0
		0: normal,	
		1: input VS frequency will be divided by 2	
0	FIELD_DET	0: Field detection is done by internal circuit using the relationship of	0
	E CT_OFF	YUVHS and YUVVS.	
		1: Field indication signal is fed from Pin 146 YUVODD (shared with	
		IBGRN3)	

INC	TR3 (Input Co	onTrol Register 3, 07H)	Default
7	USE_IHREF	H active definition for video input pixel data.	0
		0: Use external HREF pin for H active reference.	
		1: Use internal register (programmable via serial bus) for H active	
		reference.	
6	USE_IVREF	V active definition for video input lines.	0
		0: Use external VREF pin for V active reference.	
		1: Use internal register (programmable via serial bus) for V active	
		reference.	
5	IH_INV4FID	Polarity of HS pulse for field identification.	0
		0: normal.	
		1: inversed.	
4	IV_INV4FID	Polarity of VS pulse for field identification.	0
		0: normal.	
		1: inversed.	
3:1	ICLK_DELA	Programmable delay for ICLK (or IACLK):	000
	Y[2:0]	000: 0 unit delay, 001: 1 unit delay, 010: 2 units delay, 011: 3 units	
		delay	
		100: 4 units delay, 101: 5 units delay, 110: 6 units delay, 111: 7 units	
		delay.	
0	FID_INV_	Selection of the inversion of Frame Id for scaler.	0
	SCALER	0: normal, 1: inversed.	

INCT	R4 (Input Cor	nTrol Register 4, 08H)	Default
7	IA_A2PORT	The first input port selection.	0
		0: Port A selects RGB A Bus.	
6	IB_B2PORT	The second input port selection. (for YUV as well as RGB inputs)	0
		0: Port B selects RGB B Bus.	
5	ICLKDIV2_	The selection of the generation of ICLKdiv2. This bit should be set for	0
	EN	single (24-bit) port input (for YUV as well as RGB inputs)	
		0: Two-port (48-bit) input is selected.	
		1: One-port (24-bit) input is selected.	
4	IHVSDECLK	The HS/VS/DE/CLK input pins selection.	0
	A_B	0: Selects input A Bus for HS/VS/DE/CLK control signals.	
		1: Selects input B Bus for HS/VS/DE/CLK control signals.	
3-1	IBCLK_DEL	Programmable delay for IBCLK:	000
	A Y[2:0]	000: 0 unit delay, 001: 1 unit delay, 010: 2 units delay, 011: 3 units	
		delay	
		100: 4 units delay, 101: 5 units delay, 110: 6 units delay, 111: 7 units	
		delay.	
0	FORCE_UP_	The direction of deinterlacing is forced or not	0
	DN	0: not forced (all directions are allowed).	
		1: the direction of deinterlacing is forced to be up and down	

OUT	CTR3 (OUTpu	t ConTrol Register 3, 09H)	Default
7-6	FID32_CLA	The Clamp pin will send the following signals out.	00
	MP[1:0]	00: CLAMP signal.	
		01: FID (Frame Id) signal.	
		10: Reserved.	
		11: PWMR0.	
5	PCLKEQICLK	PCLK source selections:	0
		0: PCLK is from PCLK PLL or external pin PCLK_IN.	
		1: PCLK is from ICLK. (Normally for 1:1 scaling)	
4	NTSC_HDTV	Select NTSC or HDTV mode in matrix block	0
		0 : NTSC	
		1 : HDTV	
3	RST_GT_AD	Reload Gamma Table starting address control bit	0
	R	The Gamma Table starting address is reloaded to the value defined by	
		Reg GCSTART (B9h) while there is a low to high transition	
2	H_FLIP	H-flip activation	0
		0: H-flip is off.	
		1: H-flip is on (the preset value of the down counter, H_FLIP_COUNT,	
		should be set before this operation.)	

1	MPWR0ACT	PWM R0 (shared with PRED0 pin) is activated:	0
		0: PRED0 in normal mode.	
		1: PRED0 will send out the PWM signal.	
		Note: PWMR0 can be also available at CLAMP pin if	
		FID32_CLAMP[1:0] =11.	
0	MPWB0ACT	PWM B0 (shared with PBLU0 pin) is activated:	0
		0: PBLU0 in normal mode.	
		1: PBLU0 will send out the PWM signal.	

MI	SCTR0 (Misc. C	onTrol Register 0, 0AH) (This register can be read and write)	Default
7	GAMMAUSE	Use GAMMA correction table for each R,G, and B.	0
		0: Bypass the GAMMA table	
		1: Use the GAMMA look-up table	
5	DEINT_OFF_I	Deinterlace circuit On/Off control	0
	F_32PD	0: Deinterlace circuit On/Off is fully controlled by the	
		DEINTERLACE_AUTO[1:0] bits at OUTCTR2 (0x05) Register.	
		1: Reserved.	
5	VHSYN_SEL	Port A VS & HS synchronization edge	0
		0: Use ACLK rising edge	
		1: Use ACLK falling edge	
1	FREEZE	0: Normal function	0
		1: Freeze function	
3	EOSD_EN	0: External OSD will be disabled	0
		1: External OSD will be enabled	
		(The internal OSD can be enabled by IOSD_EN in bit 0 of OSDCTR1	
		register)	
2	EOSDFR	In case of EOSD_EN (bit 3) = 1,	0
		0: Internal OSD will be put in front of external OSD	
		1: External OSD will be put in front of internal OSD	
	BYPASS(Outp	0: (default) Panel VS and HS (PVS & PHS) free-runs and acts as a sync	0
	ut Free-Run	master.(In this mode, by programming the FBC_BYPASS bit in	
	Mode)	FBCTR2 Register, this chip can work with Frame Buffer which does	
		frame rate conversion or free-run for OSD display.)	
		1: In this mode, the input and output frames are synchronized. In a	
		sense, IVS& IHS are the sync master that generate PVS & PHS. (This	
		chip works without Frame Buffer.)	
		Note: In order to activate free-run mode, micro-controller should	
		choose BYPASS = 0. To this, the input data can be ignored, if	
		necessary, by setting BKFRC= 1 so background colors are sent to	
		panel.	

()	DE_DIM_EN	Dim of an area (defined by DMH_START, DMH_END,	0
			DMV_START, and DMV_END) in the display is enabled if this bit is	
			set	

MIS	CTR1 (Misc. C	onTrol Register 1, 0B hex)	Default
7	MATRIX_ON	The color space conversion (YUV to RGB) matrix is used or bypassed.	0
		0: Bypassed.	
		1: Used	
		Note: Hue_sat_adjust (bit 5 of 05hex) is used to select hue/satuate or	
		brightness/contrast adjustment.	
6	Reserved		0
5:4	DITHER_RN	DITHER RNG ON and choices.	00
	G(1:0)	00: RNG off	
		01: RNG 10	
		10: RNG 12	
		11: RNG 16	
3	EOSD_SYNS	0: EOSD data latch uses OVCLK	0
	EL	1: EOSD data latch uses the inverse of OVCLK	

MIS	MISCTR1 (Misc. ConTrol Register 1, 0B hex)					
2	CLAMP_OFF	CLAMP pulse will be generated according to the register 7A and 7B	0			
		(hex)				
		0: clamp pulse is sent out. 1: clamp pin is in tri-state				
1	BACLK_SE L	BACLK_SEL is for IBCLK or IACLK selection.	1			
		0: ICLK = IBCLK/2 (for LLC2)				
		1: ICLK = IACLK				
0	IIC_ACT_DIR	0: 2-wire serial bus parameters are activated until next VS retrace	1			
	ECT	period.				
		1: 2-wire serial bus parameters are activated upon data received				

STA	TUS1 (status Regi	Default	RD/WR	
7	reserved			R
6	reserved			R
5-4	reserved			
3	AFREEZE_RDY	For auto adjustment, this status bit will be set to 1 as the		R
		freeze function is completed. This is a RD only status bit.		

2	APXL_REPORT	For auto adjustment, by setting to 0, the PXL_REPORT		R/W
		function will be performed. This status bit will be set to 1 as		
		the function is completed.		
		This is a RD/WR bit. The PXL_REPORT function can read		
		the pixel value via PXL_Value (x74 ~ x76) of specified		
		postion via PXL_Address (x9A ~ 9D).		
1	ASOD_RDY	For auto adjustment, by setting to 0, the SOD (sum or sum of	1	R/W
		difference) function will be performed. This status bit will be set		
		to 1 as the function is completed. This is a RD/WR bit.		
0	AML_RDY	For auto adjustment, by setting to 0, the Mth line function will be	1	R/W
		performed. This status bit will be set to 1 as the function is		
		completed. This is a RD/WR bit.		

INT	INTCTR (Interrupt Control Register, 0EH)			
7	INTEN	0: Disable all interrupt	1	
		1: Enable all interrupt		
6:0	Reserved			

MIS	CTR2 (MISC Co	ntrol Register 2, 0FH)	Default
7-5	OVCLK_DEL	OVCLK phase deviation for the nominal clock reference phase	000
	AY[2:0]	. OVCLK_DELAY[2]:	
		0: OVCLK for OSD output is not inverted,	
		1: OVCLK for OSD output is inverted.	
		Besides, there are delays defined by OVCLK_DELAY[1:0] as	
		follows:	
		OVCLK_DELAY[1:0]:	
		00: 0 unit delay, 01: 1 unit delay, 10: 2 units delay, 11: 3 units	
		delay.	
4-3	DITHER_RN	RNG reset selection when dithering is used.	00
	G_RESET[1:0]	00: No reset at all after system power-on reset.	
		01: RNG reset every VS.	
		10: RNG reset every 4 VS.	
		11: RNG reset every 16 VS.	
		NOTE: Programming of RNG or FDBK_ON (feedback path is	
		connected) can be found at OUTCTR2 and MISCTR1.	
2	VIDEO_	Free run of video mode.	0
	FREERUN	0: The VS of panel is synchronized by input video VS.	
		1: The VS of panel is generated by free running.	

1	DITHER_TIME	Dithering at spatial or time domain.	0
		0: Dithering will be performed in spatial domain. Programming	
		of RNG or FDBK_ON (feedback path is connected) can be	
		found at OUTCTR2 and MISCTR1.	
		1: Dithering will be performed in time domain.	
0	RGB12_DE_DEL	During the RGB 12 bits input mode, the 12-bit data bus is	0
	AY	clocked by the positive or negative edge. This implies the DE is	
		delayed (or not) comparing the corresponding data bus.	
		0: DE has no delay.	
		1: DE delayed.	

INC	TR5 (Input Cor	ntrol Register 5, 1FH)	Default
7:6	I_DITHER_	00: no dithering operation for FBC input	00
	ON(1:0)	01: reserved.	
		10: 2 bit dithering at special domain for each R/G/B	
		11: 3 bit dithering at special domain for each R/G/B	
5:4	I_DITHER_	Dithering operation for FBC input with RNG on and choices of	00
	RNG(1:0)	cycling.	
		00: RNG off	
		01: RNG 10	
		10: RNG 12	
		11: RNG 16	
3	I_DITHER_	The error due to resolution change is fed back for dithering	0
	FDBK_ON	operation to FBC input	
		0: feedback path is disconnected.	
		1: feedback path is connected for dithering.	

INC	INCTR5 (Input ConTrol Register 5, 1FH)		
2:1	HMD_VF_CNT[HMD (Hardware Mode Detection): V Sync frame count	01
	1:0]	selection	
		00: Not allowed.	
		01: (default) VS frame count is 1.	
		10: VS frame count is 2.	
		11: VS frame count is 3.	
0	HS_EQ_HREF	The generation of internal HS signal for video display.	0
		0: Internal HS is different from HREF input.	

REGISTER FUNCTION	ADDR (HEX) MSB:ODD LSB:EVEN	RESET VALUE hex		Description
Input Horizontal Active Start(IH_ASTART[10:0])	11, 10	01,28	W	This value should be at least larger than six.
Input Horizontal Active Width (IH_AWIDTH[11:0])	13, 12	04,00	W	All default values are setting for 1024*768@60Hz
Input Hsync TOTAL (IH_TOTAL[11:0])	15,14	05,40	W	
Input Vertical Active Start (IV_ASTART[10:0])	17,16	00,23	W	
Input Vertical Active Width (IV AWIDTH[10:0])	19,18	03,00	W	
Input Vsync TOTAL (IV_TOTAL[10:0])	1B,1A	03,26	W	
Input Hsync Pulse Width (IH_PULW[7:0])	1C	44	W	This register specifies the pulse width of the input Hsync. Within this region the input video data are forced to zero by the internal circuit. The max. allowed value is 255 (in the unit of iclk).
Input VREF and HREF Delay (IVHREF_DELAY[7:0])	1D	00	W	The H and V delay for YUV input. The MSB 4-bit is defined as. VREF_DELAY[3:0] and the LSB 4-bit is HREF_DELAY[3:0]. By programming this byte, the display of video YUV signals have VREF_DELAY*2 lines and HREF_DELAY*4 pixels offsets in V and H respectively. In a word, the unit of VREF delay is 2*H-line and the unit of HREF delay is 4 pixels (or 6.75MHz). For VREF delay, VREF_DELAY=00 (default) means no delay. For HREF delay, HREF_DELAY=00 (default) means no delay.

REGISTER FUNCTION	ADDR	RESET	R/W	Description
	(HEX)	VALUE		
	MSB:ODD	hex		
	LSB:EVEN			
Input VS Delay (VS_EQ_VREF, IVS_DELAY[3:0])	1E	00	W	The input VS delay. The LSB 4-bit is used. By programming these bits, the input VS signal will be delayed by IVS_DELAY*16 or IVS_DELAY*32 pixels (depends on IRGB24=1 or 0, see INCTR1 at register 02H). IVS_DELAY=00 (default) means no delay. The bit higher than IVS_DELAY[3:0] is used for VS_EQ_VREF. Or the generation of internal VS signal for video display. 0: (default) Internal VS is different from VREF input. 1: Internal VS is equal to VREF input.
Registers 1F is used for Input Control F	Register 5 (II	NCTR5).	•	
Registers 20-2F are described at Auto A	Adjustment I	Registers		
Input Vsync Delay for Wrap Around (IV_DELAY4WRAP[10:0])	7D,7C	00,02	W	The V delay for VGA input. The value 2 (default) means no delay and 3 means one H line delay, and so on (0 and 1 are not allowed.)
Input Hsync Delay for Wrap Around (IH_DELAY4WRAP[10:0])	7F,7E	00,01	W	The H delay for VGA input. The value 1 (default) means no delay and 2 means one pixel delay, and so on (0 is not allowed.)
OUTPUT WINDOW PARAMETER				
Panel Horizontal Active Start(PH_ASTART[10:0])	31,30	01,28	W	Please refer to the figure of Output Window
Panel Horizontal Active Width(PH_AWIDTH[10:0])	33,32	04,00	W	
Peaking Control LSB(PEAKING[7:0])	34	00	W	bit[7:4]: select high-pass mode (0~15) for PEAKING bit[3:0]: select band-pass mode (0~15) for both PEAKING and LPF

Peaking Control	35	00	W	bit[1]: whether bypass peaking
MSB(PEAKING_ENTER])				0 : enable PEAKING function
				1 : BYPASS bit[0]: select
				low-pass filter or peaking
				0 : low pass filter
				1 : peaking
Panel Vertical Active Width	37,36	03,00	W	
(PV_AWIDTH[10:0])				
Panel Vsync EVEN TOTAL	39,38	03,26	W	This 10-bit register defines the
(PV_TOTAL_EVEN[10:0])				Panel Vertical Active Total Lines
				for non- interlaced video or the
				Even Field Active Total Lines for
				interlaced video.
Panel Hsync Pulse	3A	88	W	
Width(PH_PULW[7:0])				
Panel Vsync Pulse Width	3B	06		
(PV_PULW[7:0])				
OLHNVL[10:0]	3D,3C		R	report the offset between the last
				PHS to next PVS; MSB:x3D[2:0];
				LSB:x3C[7:0]
GRAPHIC_START(OSD)	3E	FF	W	Graphic font starting
GRAPHIC_END(OSD)	3F	FF		Graphic font ending
BACKGROUND AND DE DIM W	INDOW			
PARAMETER				
Background Horizontal Start	41,40	01,28	W	Please refer to the figure of Output
(BH_START[10:0])				
				Window
Background Horizontal End	43,42	05,28	W	Window ALL default values are setting for
Background Horizontal End (BH_END[10:0])	43,42	05,28		
	43,42	05,28		ALL default values are setting for
(BH_END[10:0])		05,28	W	ALL default values are setting for
(BH_END[10:0]) RESERVED	44		W	ALL default values are setting for 1024*768@60Hz
(BH_END[10:0]) RESERVED	44		W	ALL default values are setting for 1024*768@60Hz x45[0] : RESET_FBC reset FBC
(BH_END[10:0]) RESERVED	44		W	ALL default values are setting for 1024*768@60Hz x45[0]: RESET_FBC reset FBC x45[1]: RESET_SCALER reset
(BH_END[10:0]) RESERVED	44		W	ALL default values are setting for 1024*768@60Hz x45[0]: RESET_FBC reset FBC x45[1]: RESET_SCALER reset the rest of blocks (except I2C,
(BH_END[10:0]) RESERVED	44		W	ALL default values are setting for 1024*768@60Hz x45[0]: RESET_FBC reset FBC x45[1]: RESET_SCALER reset the rest of blocks (except I2C, PWM, HMD)
(BH_END[10:0]) RESERVED	44		W	ALL default values are setting for 1024*768@60Hz x45[0]: RESET_FBC reset FBC x45[1]: RESET_SCALER reset the rest of blocks (except I2C, PWM, HMD) x45[2]: PWM_OUT_EN
(BH_END[10:0]) RESERVED	44		W	ALL default values are setting for 1024*768@60Hz x45[0]: RESET_FBC reset FBC x45[1]: RESET_SCALER reset the rest of blocks (except I2C, PWM, HMD) x45[2]: PWM_OUT_EN 0: PWM output is enable

PV_COMP	47,46	03,FF	W	This register is used to fine tune the PH_TOTAL. When PV_COMP[11] = 1, the fine tune process is turned on. Besides, when the Line Count > PV_COMP[10:0], the PHS is generated by PH_TOTAL + 1 (single port out) or PH_TOTAL + 2 (dual port out)
DE_DIM Horizontal Start (DMH_START[10:0])	49,48	00,00	W	This parameter is used if DE DIM EN is on. The start and
DE_DIM Horizontal End (DMH_END[10:0])	4B,4A	04,00	W	end points are counted from the H or V display (background color)
DE_DIM Vertical Start (DMV_START[10:0])	4D,4C	00,00	W	region. Please refer to the figure of output Window. ALL default values are set for 1024*768. The MSB 4-bit of 4F, 4E register will be used for the lightness control of
DE_DIM Vertical END (DMV_END[10:0]) DE_LIGHT[15:12]	4F, 4E	03,00	W	DE dim function under the condition that DE_DIM_EN (Bit 0 of MISCTR0) is on. DE_LIGHT[15:12] is used to adjust the contrast of the dim area.
PANEL BACKGROUND PARAMET	ER			
Panel background active offset for even field (PB_LEAD_LAG_EN, PBV_AOFFSET_EVEN[9:0])	51, 50	00,00	W	The LSB 10-bit defines the offset of panel background active region for even field. The value is counted from the PV_ASTART. The MSB, PB_LEAD_LAG_EN, defines lead or lag to PV_ASTART.PB_LEAD_LAG_EN = 1 is lag, otherwise (default) lead.
Panel background active offset for odd field (PB_LEAD_LAG_OD, PBV_AOFFSET_ODD[9:0])	53, 52	00,00	W	The LSB 10-bit defines the offset of panel background active region for odd field. The value is counted from the PV_ASTART. The MSB, PB_LEAD_LAG_OD, defines lead or lag to PV_ASTART.PB_LEAD_LAG_OD = 1 is lag, otherwise (default) lead.

Panel background active width	55, 54	00,00	W	The LSB 11-bit defines the width
(PBV_AWIDTH[10:0])				of panel background active region.
OSD Font address [5:0]	56	00	W	Font RAM write address (auto
				increment). There are 63 (0x00 \sim
				0x3E) address for the
				downloadable fonts. 0xFF locates
				the space code.
OSD FONT LSB [7:0]	57	00	W	Font LSB, each font is composed
				of 20x12 bits
OSD FONT MSB [11:8]	58	00	W	Font MSB
OSD attribute for FONT	59	00	W	Font code attribute
Code(OSD_AT[7:0])				
OSD FONT code address(OSD_DT[7:0])	5A	00	W	Font code
OSD Display RAM address	5B	00	W	Display RAM, low address range
LSB(0~255)(OSD_ADL[7:0])				(0-255)
OSD Display RAM address	5C	00	W	Display RAM, high address range
MSB(256-511)(OSD_ADM[7:0])				(256-511)
OSD System Control	C2	00	W	Bit0~bit1:bits for dot rate selection
				00,01: divided by 1
				02: divided by 2
				03: divided by 3
				Bit2:Vint
				enable interrupt signal to MCU
				Bit3:WinFB_Ndrive pin FB 0 or 1
				Bit5:VintOrEndL selection
				between the leading edge of Vsync
				and the last scanning line
				Bit6:faderate determine the fade
				rate 0:0.5 sec 1:0.25 sec
				Bit7:WinMask determine whether
				the outer of OSD window is
				displayed (WinMask=0) or
				not(WinMsk=1).
OSD default setting for space code color	CA	00	W	Bit0:intensity color of space code
(OSD_SPDEF[3:0])				Bit1:blue color of space code
				Bit2:green color of space code
				Bit3:red color of space code
				Bit5~bit4:Veritical position step
	<u> </u>			Bit7~bit6:Horziontal position step

OSD first display	СВ	00	W	Point to the first display row in the
ROW(OSD_SROW[3:0])				display RAM
OSD Horizontal Start in	CC	FF	W	The horizontal starting position
Window(OSD_HPOS[7:0])				
OSD Vertical Start in	CD	FF	W	The vertical starting position
Window(OSD_VPOS[7:0])				
OSD control register2 (OSD_CTRL2)	CE	01	W	Bit0:intensity color of monitor mode Bit1:blue color of monitor mode Bit2:green color of monitor mode
				Bit3:red color of monitor mode Bit4:NOT used Bit5:wipe enable bit Bit6:wipe In/Out Bit7:wipe direction
OCDt1 (OCD CTDI)	CE	1.0	337	_
OSD control register (OSD_CTRL) PWM_HIGH_PERIOD[15:8]	SD SD	00 OO	W	Bit0:OSD enable bit Bit1:select blinking rarte Bit2:the polarity of R,G,B,I,FB Bit3:Vsync polarity Bit4:Hysnc polarity Bit5:monitor mode enable Bit6:half-tone/see through-effect enable bit Bit7:determine if background color can be spilt. Define the duty ratio of PWM. Duty Ratio = PWM_HIGH_PERIOD / PWM_PERIOD Note: MSB should be programed first. LSB is located at x79[7:0]. The
				smallest value of
PWM_PERIOD[15:0]	5F,5E	00,FF	W	PWM_HIGH_PERIOD is '1'. Define the frequency of PWM. PWM frequency = 14.318MHz/ 4 /PWM_PREIOD Note: MSB should be programmed first. PWM_PERIOD should be greater than PWM _HIGH_PERIOD. So this PWM can be programed from 55Hz to1.7MHz.

V_LINE_DROP[9:0] Emulated IH period by PCLK(SIH_EMU[12:0])	63,62	00,00	W	Number of lines will be dropped for V scaling down with SDRAM. The lines of dropped is defined by (1024-V_LINE_DROP)/1024 = (IV_AWIDTH – Number of dropped lines) / IV_AWIDTH For V scaling down with SDRAM, this register should be set to 0. The period of pseudo input HS counted by panel clock This value is calculated by PH_TOTAL *
H_FLIP_COUNT[12:0]	65,64	03,FF	W	SV_NUME / SV_DENO Preset value of H-flip down counter. This counter will be activated only if the flag H_FLIP at bit 2 of Reg OUTCTR3 is on.
SHdx[6:0],SHdy[6:0],SHhinc[5:0]	66,67,68	01,00,20	W	SHhinc= floor(32/Hsf), Hdy/Hdx = 32/Hsf - SHhinc. Note that we should set SHdx[5:0]=01, SHdy[5:0]=00, and SHhinc[4:0]=20 for scaling down operation
SVdx[5:0],SVdy[5:0],SVhinc[5:0]	69,6A,6 B	01,00,20	W	SVhinc= floor(32/Vsf), Vdy/Vdx= 32/Vsf - SVhinc. These parameters are used for both scaling up and down
SAHdx[6:0], SAHdy[6:0], SDnAHhinc[7:0] (SAHdx[6:0] and SAHdy[6:0] are not used in t0911/t0944/t0946/t0947/t0949/t0959)	6C,6D 6E	01,00,80	W	AHhinc= floor(8*Hsf), AHdy/AHdx= 8*Hsf - AHhinc. The MSB 2-bit of SDnAHhinc is defined as SALGO for scaling algorithm selection, where SALGO = 0 chooses linear interpolation, SALGO = 1 selects bell shape interpolation, SALGO = 2 selects SINC (default), SALGO = 3 chooses pixel replicate. The algorithms in the order of smoothness to sharpness are SINC, bell, linear, and replicate.

	1	1		EL 2.1. 144.7500111 2
				The 3rd and 4th MSB bits of
				SDnAHhinc, namely V_SD_ON
				and H_SD_ON , are used for
				enabling V and H scaledown
				operations, i.e.
				SD_ON=0 (default) for scaling up,
				SD_ON=1 for scaling down.
Vertical Nume(SV_NUME[5:0])	6F	01	W	Vnume/Vdeno = Vsf (scaling
Vertical Deno(SV_DENO[5:0])	70	01	W	factor in V direction). The Vnume
				and Vdeno can be any values for
				scaling up but should be
				constrained by Vdeno=Vnume + 1
				for scaling down.
SDNHdx[5:0],SDNHdy[5:0],SDNHhinc[71,72,73	01,00,08	W	For scaling down, SDNHhinc=
3:0]				floor(8/Hsf), SDNHdy/SDNHdx=
				8/Hsf - SDNHhinc. Note that we
				should set SHdx[6:0]=01,
				SHdy[6:0]=00, and
				SHhinc[5:0]=20 for scaling down
				operation. Also note that
				SDNHdx[5:0]=01,
				SDNHdy[5:0]=00, and
				SDNHhinc[3:0] =08 should be set
				for scaling up operation.
Registers 74-78 are for Auto Adjustments				or stands of the
MISC				
PWM HIGH PERIOD [7:0]	79	00	W	Define the duty ratio of PWM.
(The other two PWMs are located at FE	, ,			Duty Ratio =
and FF)				PWM HIGH PERIOD /
				PWM PERIOD
				Note: should program MSB byte
				first MSB is located at x5D[7:0].
				See also Registers FE-FF for
				PWMR0 and PWMB0.
Clamp pulse starting setting register	7A	8A	W	The starting point of clamp pulse
	/ A	o.a.	**	setting. Counted from the falling
(CLAMP_STA)				
Oleman In 114 W	7D	00	***	edge of sync pulse by IACLK.
Clamp pulse width setting register	7B	80	W	The width of clamp pulse by IACLK
(CLAMP_WIDTH)				(1.2us is suggested)

			L	L
The 1st line of the window for SOD	21,20	00,00	W	Define the range of intra-frame
calculation (AWV1START[10:0])				SOD operation.
The last line of the window for SOD	23,22	00,00	W	Note that AWVSTART and
calculation (AWV1END[10:0])				AWHSTART are counted from
The 1st pixel of the window for SOD	25,24	00,00	W	the starting edge of input
calculation (AWH1START[10:0])				VSync/HSync pulse.
The last pixel of the window for SOD	27,26	00,00	W	AWVSTART should be larger
calculation (AWH1END[10:0])				than 3 and AWHSTART should
				be larger than 6.
The 1st line of the window for SOD	DD,DC	00,00	W	Define the range of intra-frame
calculation (AWV2START[10:0])				SOD operation.
The last line of the window for SOD	DF,DE	00,00	W	Note that AWVSTART and
calculation (AWV2END[10:0])				AWHSTART are counted from
The 1st pixel of the window for SOD	FB,FA	00,00	W	the starting edge of input
calculation (AWH2START[10:0])				VSync/HSync pulse.
The last pixel of the window for SOD	FD,FC	00,00	W	AWVSTART should be larger
calculation (AWH2END[10:0])				than 3 and AWHSTART should
				be larger than 6.
The resulting value of the sum of the SOD	28,29,	00,00	R	
calculation (ASUM[31:0])	2A,2B			
The resulting value of sum of difference of	2C,2D2E	00,00	R	
the SOD calculation (ASOD[31:0])	,2F			
PXL Value	76,75,74	00,00	R	Report the data value of specified
				position in PXL_Address
				(x9A~9D)
				74 : R
				75 : G
				76 : B
Reserved	77	00	W	
SOD Mask Register (SODMASK[7:0])	78	00	W	The MSB 3 bit of
				SODMASK[7:0],
				SOD_MASK_BIT[2:0], is used to
				select the number of MSB bits for
				SOD operation. There are five
				possibilities. If
				SOD_MASK_BIT=000, all bits
				are calculated. If
				SOD_MASK_BIT=001, the LSB
				1 bit is not cared. While if
		1	1	
				SOD_MASK_BIT=1xx, the LSB4

Registers 79-7B (PWM and clamp) are des	scribed at	MISC, a	nd Regi	SODMASK[7:0], SOD_R_MASK, SOD_G_MASK, and SOD_B_MASK, are used to select the color channels for SOD operation, e.g. if SOD_R_MASK=1, the RED channel is not involved in the calculation. The default state is all channels are calculated.
are described at INPUT WINDOW.	l	L	L	—
Maximum Threshold (ARGB_MAX[7:0])	80	7F	W	Designate the threshold value for R, G, and B. The result will be available at AML_OVERFLOW (Reg. 0xAC)
Minimum Threshold (ARGB_MIN[7:0])	81	00	W	Designate the threshold value for either R, G, or B
Freeze line address(AFZLADDR[10:0])	83,82	00,00	W	Designate the line to be frozen and read by host. The line number is counted from V active region.
Freeze line pixel start address (AFZHSTART[10:0])	85,84	00,00	W	Designate the line to be frozen and read by host. The pixel number is counted from H active region. Please refer to the MSB of OUTCTR0 register 03 Hex
Freeze line read address (AFZREAD[7:0])	86	00	R	After the registers AFZLADDR and AFZHSTART are designated, this register can be read sequentially for the content of frozen line buffer.
The Mth line chosen to check the horizontal start & end (AMLNUM[10:0])	89,88	00,00	R/W	Designated by host, the auto adjust function searches (horizontally) the starting and ending pixels along the Mth line. If 00 are programmed, the entire screen is covered for H_start and H_end points searching.
The 1st line exceeds ARGB_MIN	8B,8A	00,00	R	
(AVSTART[10:0])				

The last line exceeds ARGB_MIN	8D,8C	00,00	R	
(AVEND[10:0])				
The 1st pixel exceeds ARGB_MIN	8F,8E	00,00	R	
position at Mth line (AMLHSTA[10:0])				
The last pixel of the Mth line exceeds	91,90	00,00	R	If $SOD_INTRA = 1$ (SOD, sum of
ARGB_MIN position (AMLHEND[10:0])				difference), the number read should minus one.
The RGB value of the 1st pixel of the Mth	92,93,94	00,00,00	R	If SOD INTRA = 1 (SOD, sum of
line that exceeds ARGB MIN				difference), the values are not
(AMLHSTAR[7:0],AMLHSTAG[7:0],A				available.
ML HSTAB[7:0])				
The RGB value of the last pixel of the Mth	95,96,97	00,00,00	R	f SOD INTRA = 1 (SOD, sum of
line that exceeds ARGB MIN				difference), the values are not
(AMLHENDR[7:0],AMLHENDG[7:0],A				available
MLHENDB[7:0])				
	98		W	
VHPERLOW 16BIT	99	00		The MSB 4-bit of Reg 99 is
_				Vperiod[3:0] and the LSB 4-bit is
				Hperiod[3:0]
PXL Address	9B,9A		W	The PXL REPORT function
	9D,9C			(xOD[2]) can read the pixel value
				via PXL_Value (x74 \sim x76) of
				specified postion via
				PXL_Address (x9A ~ 9D). Note:
				9A 9B V position(Y)
				9C 9D H position(X)
				The position are counted and
				aligned to V/Hsync.
VSEP_SPT	9F,9E	00,60	R	programmable sampling point,
_	,			this is a 12-bits register for Csync
				separation
Registers A0-A7 are for ICLK/PCLK Mea	surement		I	
RESERVED	A8		R	
PX_AS_ALINE[3:0]	A9	02	W	The threshold of number of pixels
				that will be treated as an active
				line. The LSB 4-bit will be used.
				The default number is at least 2
				pixels will be treated as an active
T. Control of the con	1			

ADJUST compare (AH_START[10:0]) window (counted from the le edge of sync pulse). The traitedge is 2 pixels before the new sync pulse. The value AH_START should be at least larger than six. An overflow had been detected on the MthAC line (AML_OVERFLOW) (0: B channel, 1: G channel, 2: R channel, other bits are reserved) ICLK/PCLK MEASURE PARAMETER ICLK MEASURE (XPULSE_BY_ICLK[15:0]) A1,A0 O0,00 R The number the XTAL pulse (programmable at the length 1K, 2K, 3K, and 4K) counted the ICLK. Using this measurement, the period of can be derived by 69.8413*1 XTAL_PULSE_SEL /XPULSE_BY_ICLK where	ext or or B e
edge is 2 pixels before the name sync pulse. The value AH_START should be at least larger than six. An overflow had been detected on the MthAC	ext or ot Reg or B
sync pulse. The value AH_START should be at lea larger than six. An overflow had been detected on the MthAC line (AML_OVERFLOW) (0: B channel, 1: G channel, 2: R channel, other bits are reserved) ICLK/PCLK MEASURE PARAMETER ICLK MEASURE (XPULSE_BY_ICLK[15:0]) A1,A0 O0,00 R The number the XTAL pulse (programmable at the length 1K, 2K, 3K,and 4K) counted the ICLK. Using this measurement, the period of can be derived by 69.8413*1 XTAL_PULSE_SEL	or at Reg or B
sync pulse. The value AH_START should be at lea larger than six. An overflow had been detected on the MthAC line (AML_OVERFLOW) (0: B channel, 1: G channel, 2: R channel, other bits are reserved) ICLK/PCLK MEASURE PARAMETER ICLK MEASURE (XPULSE_BY_ICLK[15:0]) A1,A0 O0,00 R The number the XTAL pulse (programmable at the length 1K, 2K, 3K,and 4K) counted the ICLK. Using this measurement, the period of can be derived by 69.8413*1 XTAL_PULSE_SEL	or at Reg or B
AH_START should be at least larger than six. An overflow had been detected on the MthAC In a control of the many larger than six. An overflow had been detected on the MthAC In a control of the many larger than six. An overflow (a value larger equal to ARGB_MAX[7:0] and the many larger than six. An overflow (a value larger equal to ARGB_MAX[7:0] and the many larger than six. An overflow (a value larger equal to ARGB_MAX[7:0] and the many larger than six. An overflow (a value larger than six. An overflow (a value larger equal to ARGB_MAX[7:0] and the many larger than six. An overflow (a value larger equal to ARGB_MAX[7:0] and the many larger than six. An overflow (a value larger than six. An overflow	or at Reg or B e
larger than six. An overflow had been detected on the MthAC 00 R An overflow (a value larger line (AML_OVERFLOW) (0: B channel, 1: G channel, 2: R channel, other bits are reserved)	or at Reg or B e
line (AML_OVERFLOW) (0: B channel, 1: G channel, 2: R channel, other bits are reserved) ICLK/PCLK MEASURE PARAMETER ICLK MEASURE [XPULSE_BY_ICLK[15:0]) A1,A0 O0,00 R The number the XTAL pulse (programmable at the length 1K, 2K, 3K, and 4K) counted the ICLK. Using this measurement, the period of 1 can be derived by 69.8413*1 XTAL_PULSE_SEL	or B
1: G channel, 2: R channel, other bits are reserved) CLK/PCLK MEASURE PARAMETER	or B
1: G channel, 2: R channel, other bits are reserved) CLK/PCLK MEASURE PARAMETER	or B
reserved) ICLK/PCLK MEASURE PARAMETER ICLK MEASURE (XPULSE_BY_ICLK[15:0]) A1,A0 O0,00 R The number the XTAL pulse (programmable at the length 1K, 2K, 3K, and 4K) counted the ICLK. Using this measurement, the period of can be derived by 69.8413*1 XTAL_PULSE_SEL	e
ICLK MEASURE (XPULSE_BY_ICLK[15:0]) A1,A0 00,00 R The number the XTAL pulse (programmable at the length 1K, 2K, 3K, and 4K) counted the ICLK. Using this measurement, the period of can be derived by 69.8413*1 XTAL_PULSE_SEL	
ICLK MEASURE (XPULSE_BY_ICLK[15:0]) A1,A0 00,00 R The number the XTAL pulse (programmable at the length 1K, 2K, 3K, and 4K) counted the ICLK. Using this measurement, the period of can be derived by 69.8413*1 XTAL_PULSE_SEL	:
(XPULSE_BY_ICLK[15:0]) (programmable at the length 1K, 2K, 3K, and 4K) counted the ICLK. Using this measurement, the period of can be derived by 69.8413*1 XTAL_PULSE_SEL	
1K, 2K, 3K, and 4K) counted the ICLK. Using this measurement, the period of can be derived by 69.8413*1 XTAL_PULSE_SEL	of
the ICLK. Using this measurement, the period of 1 can be derived by 69.8413*1 XTAL_PULSE_SEL	
measurement, the period of can be derived by 69.8413*1 XTAL_PULSE_SEL	- 5
can be derived by 69.8413*1 XTAL_PULSE_SEL	CLK
XTAL_PULSE_SEL	
XTAL PULSE SEL (=1, 2,	
4) is defined in Register INC	
(06 hex)	
PCLK MEASURE A3,A2 00,00 R The number the XTAL pulse	;
(XPULSE_BY_PCLK[15:0]) (programmable at the length	
1K, 2K, 3K, and 4K) counted	
the PCLK. Using this	
measurement, the period of	CLK
can be derived by	
69.8413*1024*XTAL PUL	SE S
EL / XPULSE_BY_PCLK v	_
XTAL_PULSE_SEL (=1, 2,	
4) is defined in Register INC	
(06 hex)	
IH TOTAL MEASURE A5,A4 00,00 R The length of HS period,	
(IHTOTAL_BY_ICLK[10:0]) IH_TOTAL, counted by the	
ICLK.	1

MCLK MEASURE	A7,A6	00,00	R	The number the XTAL pulse
(XPULSE_BY_MCLK[15:0])				(programmable at the length of
				1K, 2K, 3K, and 4K) counted by
				the MCLK.
RCONTRAST[7:0]	AE	00	W	256 level contrast control for R
				The input signal is multiplied by a
				value ((CONTRAST+128) mod
				256)/128 where CONTRAST is in
				the range of [255,0].
RBRIGHTNESS[7:0]	AF	00	W	256 level brightness control for R
				7f ->127,, 01 -> 1, 00 -> 0, ff
				->-1,, 80 -> -128 i.e. The input
				data is added by a 2,s complement
				value.
GCONTRAST[7:0]	В0	00	W	256 level contrast control for G
GBRIGHTNESS[7:0]	B1	00	W	256 level brightness control for G
GAMMA table R write	B2	00	W	Each gamma-correction table is a
Address (GRWADDR[7:0])				256x10 LUT (look-up table)
				which can be updated by writing to
				these ports. Each entity is
				composed of high and low bytes
				which share the same write
				address. Low byte content is
				written followed by the high byte
				content. Lower entity data are sent
				to a certain channel (e.g. R or G or
				B) followed by the next higher
				entity. In a word, R channel is
				updated by sending data for entity
				0, 1, till the final one entity255.
				Then channel G followed by
				channel B.
GAMMA table G write	В3	00	W	
Address (GGWADDR[7:0])				
GAMMA table B write	В4	00	W	
Address (GBWADDR[7:0])				
(The table write address will be auto				
increased upon each writing)				

B5	00	W	The 16x16 Color LUT can be	
			written by host from this port. First	
			the lower byte data are sent to an	
			entity, then followed by the higher	
			byte data, color index 0 is filled	
			followed by color index 1 until	
			color index 15, the final one. The	
			16-bit output of this color LUT	
			will be interpreted as the RGB565	
			format, i.e. the MSB 5 bits are for	
			R, the middle 6 bits for G, and the	
			LSB 5 bits for B.	
B6	00	W	The MSB of CLUT ALPHA is	
			used indirectly for the	
			interpretation of the I signal of	
			OSD, while CLUT_ALPHA[2:0]	
			is used to select the blending factor	
			between the output of the CLUT	
			and the output of the dithered	
			video.	
			CLUT_ALPHA[3]=	
			0: The content of CLUT is	
			RGB565.	
			1: The content of CLUT is	
			RGB555.	
			And the LSB of G will be	
			interpreted as LSB of G of CLUT	
			read out	
			=0: means alpha blending off.	
			=1: means alpha blending on.	
			If alpha blending is on and any one	
			of the internal/external	
			OSD/background color is	
			activated, the final video of panel	
			out will be equal to	
			Video*CLUT_ALPHA[2:0]/8+C	
			LUT*	
			(1-CLUT_ALPHA[2:0]/8). For	
			the case that	
			CLUT_ALPHA[2:0]=0, the final	
			video of panel is directly from the	
			output of CLUT. And for	
	B6	B6 00	B6 00 W	

				CLUT ALPHA[2:0]=6, the final		
				video is Video*6/8+CLUT*2/8.		
BCONTRAST[7:0]	В7	00	W	256 level contrast control for B		
				The input signal is multiplied by a		
				value ((CONTRAST+128) mod		
				256)/128 where CONTRAST is in		
				the range of [255,0].		
BBRIGHTNESS[7:0]	В8	00	W	256 level brightness control for B		
				7f->127,, 01 -> 1, 00 -> 0, ff ->		
				-1,, 80-> -128 i.e. The input data		
				is added by a 2,s complement		
				value		
GCSTART[7:0]	В9	00		Define Gamma Table Starting		
				Address		
PLL program parameter						
Registers 0xBA- 0xBE, please refe	er to the Section	of Clock	System	n for PPLL and MPLL setting.		
HMD						
DE_DUMMY_CNT	BF		W			
DE PARAMETER						
DE counts per Vactive	C1,C0	00,00	R	The number of DE pulses per VS		
(DEno_perV[10:0])				period.		
IN/OUT HS/VS PARAMETER			1			
Panel Vertical back-porch	C3	FF	W	The register defines the		
(PV_BACKPORCH[7:0])				back-porch of panel output. This		
				setting is used only when FBC is		
				not bypassed.		
Panel HSync total	C5,C4	00,00	W	The LSB 11-bit defines the total		
(PH_TOTAL[10:0])				value of LCD panel HS. The value		
				is counted by PCLK. Using the		
				results of ICLK/PCLK		
				measurement (see Reg. A0-A3),		
				this parameter can be calculated		
				via IH_TOTAL * ICLK_Period =		
				Vsf * PH_TOTAL *		
				PCLK_Period.		
Panel HSync delay	C7,C6	00,00	W	The LSB 11-bit defines the delay		
(PH_DELAY[10:0])				of display output HS from IVS.		
				The value is counted by PCLK.		

The register defines the value of pixel delay of an internal signal	
SFDP. The value is counted from	
the falling edge of input VS by	
ICLK. This delayed signal is used	
VS.	
alue of	
ignal	
SFDL. The value is counted from	
/S by	
is used to	
-	
t	

Registers CA-CF are described in OSD Parameters

Registers D0-DB are described in Hardware Mode Detection Parameters

FBC	TR0 (FBC control 0, E	СОН)				
Regi	sters E0-EF are describe	ed in Frame Buffer Control Parameters				
7	FILL_PAT	0: no operation				
	(test_pat)	1: Write the pattern (a byte data specified by FBC_PAT or hex E5				
		register) to SDRAM or SGRAM				
6	LMR_REQ	0: no op.	0			
		1: load SDRAM/SGRAM mode register (should be reset to 0				
		before normal access of SDRAM)				
5 VGA_I	VGA_DBUF_MODE	1: DOUBLE BUFFER MODE and force FBC to write the upper	0			
		space of SDRAM (from BASE_ADDR to boundary limit of				
		SDRAM)				
4	SC_DBUF_MODE	1: DOUBLE BUFFER MODE and force FBC to read the upper	0			
		space of SDRAM (from BASE_ADDR to boundary limit of				
		SDRAM)				
3	DOUBLE_BUF_MO	De-Frame-Tear Mechanism 1	0			
	DE	0 : disable				
		1 : enable				
2	SKIP_MODE	De-Frame-Tear Mechanism 2	0			
		0 : disable				
		1 : enable				
1	DRAM_MODE	Select the configuration of SDRAM	0			
		0 : 512Kx2x16				
		1: 1Mx4x16				
0	BASE_ADDR[16]	When use SDRAM configuration of 1Mx4x16, treat this bit as	0			
		the bit 16 of BASE_ADDR which is define by				
		BC_BASE_ADDR (xE6,xE7)				

Model No.: LCT-17HT Version: 1.0

FBC	TR1 (FBC control r	register1, E1H)	Default		
7	V_flip	0: Vertical flip of screen display is disabled.	0		
		1: Vertical flip of screen display is enabled.			
		(Note: V-flip is not supported for double buffering)			
6:4	REF_CYC	Number of refresh cycle per HS for DRAM refresh request (>=4	000		
		suggested or >= 4096 cycles per 64ms)			
		000: 1 cycles, 001: 2 cycle, 010: 3 cycles, 011: 4 cycles,			
		100: 5 cycles, 101: 6 cycles, 110: 7 cycle, 111: 8 cycles			
3:0	REF_RASL	Number of cycles between auto refresh RAS pulse (active low)	1011		
		for DRAM (>=8 suggested)			
		0000: 16 clocks, 0001: 1 clock, 0010: 2 clocks, 0011: 3 clocks,	5,		
		0100: 4 clocks, 0101: 5 clocks, 0110: 6 cycle, 0111: 7 clocks			
		1000: 8 clocks, 1001: 9 clocks, 1010: 10 clocks, 1011: 11 clocks,			
		1100: 12 clocks, 1101: 13 clocks, 1110: 14 cycle, 1111: 15 clocks			

FBCTR2 (FBC control2, E2H)				
7	Freeze_FB	0: the content of the frame buffer is updated by the input signals.	0	
		1: the content of the frame buffer is frozen and the input signals		
		will be ignored.		
6	FBC_BYPASS	0: Frame buffer controller will be activated	0	
		1: Frame buffer controller will be bypassed and put to power		
		saving mode (turn off MCLK).		
5:4	JPEG_MODE [1:0]	00: JPEG Legacy Mode	00	
		10: JPEG Horizontal Auto Increment Mode		
		11: JPEG Vertical Auto Increment Mode		
3	Interlace_enable	0: Non-interlace frame-buffer read/write	0	
		1: Interlace frame-buffer read/write.		
2	JPEG_load	JPEG segment data writing action started	0	
		0: No action.		
		1: JPEG data load.		
1:0	ACKPH[1:0]	Wait cycles of ACK (acknowledge for receiving data) for SD/SGRAM	01	
	interface. Adjust the timing of FBC to latch SD/SGRAM data.			
		00: 0 wait cycle, 01: 1 wait cycle, 10: 2 wait cycles 11: 3 wait cycles		

FBC	TR3 (FBC control re	egister3, E3H)	Default
7:4	MCLKIN_DELA	MCLK phase deviation for input clock interface	0000
	Y[3:0]	MCLKIN_DELAY[3]:	
		0: MCLK for data input is not inverted,	
		1: MCLK for data input is inverted.	
		Besides, there are delays defined by MCLKIN_DELAY[2:0] as	
		follows: MCLKIN_DELAY[2:0]:	
		000: 0 unit delay, 001: 1 unit delay, 010: 2 units delay, 011: 3	
		units delay	
		100: 4 unit delay, 101: 5 units delay, 110: 6 units delay, 111: 7	
		units delay	
3:0	MCLKOUT_	MCLK phase deviation for output clock interface	0000
	DELAY[3:0]	MCLKOUT_DELAY[3]:	
		0: MCLK for data output is not inverted,	
		1: MCLK for data output is inverted.	
		Besides, there are delays defined by MCLKOUT_DELAY[2:0]	
		as follows: MCLKOUT_DELAY[2:0]:	
		000: 0 unit delay, 001: 1 unit delay, 010: 2 units delay, 011: 3	
		units delay	
		100: 4 unit delay, 101: 5 units delay, 110: 6 units delay, 111: 7	
		units delay	

FBC_	FBC_PAT (FBC memory test PATtern, E4H)					
7	MPAT_7	A pattern of MPAT_[7:0] will be written to R, G, and B component of	0			
6	MPAT_6	frame buffer for memory testing	0			
5	MPAT_5		0			
4	MPAT_4		0			
3	MPAT_3		0			
2	MPAT_2		0			
1	MPAT_1		0			
0	MPAT_0		0			

A frame buffer test pattern can be defined and tested by the settings in FBC_PAT register (0FH) and the bit 7 (FILL_PAT) of FBCTR0 (07H).

(FBC E5H)					Default
xE5		FBC_JPEG_	_HS_NUM	When JPEG_MODE = "10" (Horizontal Auto Increment	00
				Mode), set this register to the number of vertical JPEG	
				blocks in one frame.	

Model No.: LCT-17HT

FBC_BA	FBC_BASE_ADDR setting (E6, E7 Hex)			
E7,E6	Base address of The registers should be set before the FBC enters into the			
	SDRAM addressing	following three modes:		
	space (FBC_BASE_	(1) De-frame-tear mode.		
	ADDR[15:0])	(2) Double buffer mode		
		(3) Self test mode.		
		The value of FBC_BASE_ADDR is 32 word alignment		
		with respective to the physical SDRAM address, i.e. 5		
		zeros will be attached to the LSB. For example, set the		
		FBC_BASE_ADDR with 0x0101, the actual address will		
		be 0x02020.		

FBC_1F	FBC_1H_TOTAL setting (E9, E8 Hex)			
E9,E8	IH Total value for FBC	Depends on the horizontal active width.	02,58	
	(FBC_IH_TOTAL[15:			
	0])			

SD/SGD	PRAM mode setting (EB	, EA Hex)	Default
EB,EA	SG/SDRAM mode	The 12-bit data for SG/SDRAM mode setting.	02,27
	setting register	xEB[1:0] : Write Burst Mode	
	(FBC_DRAM_MODE[0: Programmed Burst Length	
	11:0])	1: Single Location Access (default)	
		xEA[6:4]: CAS Latency	
		010 : CAS Latency 2 (default)	
		011 : CAS Latency 3	
		xEA[3] : Burst Type	
		0 : Sequential (default)	
		1 : Interleaved	
		xEA[2:0] : Burst Length	
		000: 1 001: 2 010: 4 011: 8	
		111: Full Page (default)	
		When you adjust the CAS Latency, you should adjust the	
		setting of register xE2[1:0] to delay the latch SDRAM	
		data timing.	
		After setting the values for this mode register, one should	
		set the LMR_REQ to 1 and then reset it to 0. The	
		LMR_REQ is at bit 6 of FBCTR0 (E0hex)	

SD/SGD	RAM refresh setting (E	D, EC Hex)	Default
ED,EC	No. of cycles between	No. of cycles between refresh RAS (active low) pulse is	1f,00
	refresh RAS pulse	assigned by the following:	
	(SET_REF_IH	The refresh requirement of DRAM is 4096/64ms. If the	
	S,FBC_REF_TI	access clock of SDRAM is 100MHz. The REF_TIME	
	ME[11:0])	should be less than the value mclk*64*1000/4096 where	
		the unit of mclk is MHz.	
		There is a SET_REF_IHS bit located at the next MSB	
		side of FBC_REF_TIME[11:0]. If the SET_REF_IHS bit	
		is set to one, the generation of SDRAM refresh cycle will	
		be synchronous to input H sync signal or the refresh timer	
		(0xED[11:8], 0xEC[7:0]) expired.	
		If the SET_REF_IHS is 0, the SDRAM refresh cycle will	
		be generated only when the refresh timer (0xED[11:8],	
		0xEC[7:0]) expired.	

FBC_	FBC_TEST_CN (FBC TEST CONTROL, EEH)		
7	FBC_VS	VS signal set and reset for FBC test control	0
6	FBC_VAC	T FBC V-active signal set and reset for FBC test control.	0
5	FBC_HS	FBC HS signal set and reset for FBC test control.	0
4	FBC_HACT	FBC H-active signal set and reset for FBC test control.	0
3	FBC_SDRAM_RD	FBC SDRAM read signal set and reset for FBC test	0
		control.	
2	CLR_MEM	Toggle the bit will clear the SDRAM with the pattern	0
		programed by FBC_PAT(xE4). The clear space is	
		selected by CLE_AB_SEL (xEE[1])	
1	CLR_AB_SEL	This bit will select which buffer to be clear.	0
0	FBC_TEST_ ACT	Activate the SDRAM self-test.	0

FBC_TE	ST RESULT (EF Hex)		Default
EF	FBC_TEST_RESULT	SD/SGRAM test resulting data (read only)	00

REGISTER FUNCTION	ADDR	RESET	R/W	Description
	(HEX)	VALUE		
	MSB:ODD	hex		
	LSB:EVEN			
Register E0-EF are described in Frame Bu	ffer Cont	rol Param	eters	
Starting address of x direction for JPEG	F1,F0	00,00	W	The LSB 11-bit defines the starting
write (JPEG_WR_X[10:0])				address of x direction for JPEG
				write.

Model No.: LCT-17HT Version: 1.0

Starting address of y direction for JPEG write (JPEG_WR_Y[10:0])	F3,F2	00,00	W	The LSB 11-bit defines the starting address of y direction for JPEG write.
Reserved	F7,F6			
Threshold for motion detection of the deinterlacing circuit (CNMA_THDmotion[15:0])	F9,F8	00,20	W	This 2-byte register is used as the threshold of the motion detection of the de-interlacing circuit. The higher the value, the higher the possibility that the picture sequence will be treated as a static clip.
PWMR0[7:0]	FE	00	W	In ZiproSX, the PWMR0 (pulse width modulated) signal shares the pin with PRED0. The selection is controlled by the PRED0ACT bit 1 in OUTCTR3. The default value 00 means a low output while the value ff (hex) can be integrated by a capacitor for an almost high signal. Note: This signal can also be accessed at CLAMP Pin by setting the bits FID32_CLAMP=11(bin) at OUTCTR3 (0x09) Register.
PWMB0[7:0] (There is another PWM described at Reg. 79)	FF	00	W	In ZiproSX, the PWMB0 (pulse width modulated) signal shares the pin with PBLU0. The selection is controlled by the PBLU0ACT bit 0 in OUTCTR3. The default value 00 means a low output while the value ff (hex) can be integrated by a capacitor for an almost high signal.

Following is the control registers table of the ZiproSX internal OSD. The description of each register is as follows.

Table1 Control Register Table

REGISTER	ADDR		ontro	- 8	Bit N					Reset
FUNCTION	(HEX)	В	В	В	В	В	В	В	В	Value
		7	6	5	4	3	2	1	0	
OSDAT	59 H	A	A	A	Α	A	A	Α	Α	00
		7	6	5	4	3	2	1	0	Н
OSDAT	5AH	D	D	D	D	D	D	D	D	00
		7	6	5	4	3	2	1	0	Н
OSDADL	5BH	A	Α	Α	A	A	A	A	Α	00
		d	d	d	d	d	d	d	d	Н
		7	6	5	4	3	2	1	0	
OSDADH	5CH	A	Α	Α	A	A	A	A	Α	00
		d	d	d	d	d	d	d	d	Н
		7	6	5	4	3	2	1	0	
OSDFAddr	56H	A	Α	Α	A	A	A	A	Α	00
		7	6	5	4	3	2	1	0	Н
OSDFontL	57H	D	D	D	D	D	D	D	D	00
		7	6	5	4	3	2	1	0	Н
OSDFontM	58H	-	-	-	_	D	D	D	D	00
						1	1	9	8	Н
						1	0			
SysControl	C2	W	F	V	V	W	V	С	С	00
	Н	I	a	i	L	i	i	L	L	Н
		N	d	n	v	n	n	K	K	
		M	e	t	L	F	t	m	m	
		a	r	О		В		u	u	
		S	a	R		_		X	X	
		k	t	Е		N		1	0	
			e	N						
			-	D						
				L						

REGISTER	ADDR				Bit N	I ap				Reset
FUNCTION	(HEX)	В	В	В	В	В	В	В	В	Value
		7	6	5	4	3	2	1	0	
OSDSP-def	CA	Н	Н	V	V	R	G	В	Ι	00
	Н	P	P	P	P					Н
		S	S	S	S					
		t	t	t	t					
		e	e	e	e					
		p	p	p	p					
		1	0	1	0					
OSDStartRow	СВ	-	-	-	-	R	R	R	R	00
	Н					o	o	o	o	Н
						w	w	w	w	
						3	2	1	0	
OSDHpos	CC	Н	Н	Н	Н	Н	Н	Н	Н	7F
	Н	7	6	5	4	3	2	1	0	Н
OSDVpos	CC	V	V	V	V	V	V	V	V	3F
	Н	7	6	5	4	3	2	1	0	Н
OSDCtrl2	CE	W	W	W	-	R	G	В	I	02
	Н	i	i	i						Н
		p	p	p						
		e	e	e						
		D	I	Е						
			n	n						
			/	a						
			О							
			u							
			t							
OSDCtrl	CF	S	Н	M	Н	V	В	В	O	1C
	Н	p	-	О	p	p	p	f	S	Н
		1	t	n					D	
		i	0	i					Е	
		t	n	t						
			e	0						
				r						

Graphic_Start	3E	G	G	G	G	G	G	G	G	FF
	Н	S	S	S	S	S	S	S	S	Н
		t	t	t	t	t	t	t	t	
		a	a	a	a	a	a	a	a	
		r	r	r	r	r	r	r	r	
		t	7	t	t	t	t	t	t	
		7	6	5	3	3	2	3	0	
Graphic_End	3F	G	G	G	G	G	G	G	G	FF
	Н	Е	Е	E	Е	Е	Е	Е	Е	Н
		n	n	n	n	n	n	n	n	
		d	d	d	d	d	d	d	d	
		7	6	5	4	3	2	1	0	
OSDWindow_	F4	-	-	-	_	A	A	A	A	00
Addr	Н					d	d	d	d	Н
						d	d	d	d	
						r	r	r	r	
						3	2	1	0	
OSDWindow_	F5	D	D	D	D	D	D	D	D	00
Data	Н	a	a	a	a	a	a	a	a	Н
		t	t	t	t	t	t	t	t	
		a	a	a	a	a	a	a	a	
		7	6	5	4	3	2	1	0	

Table 2 OSD Window Register Table

REGISTER	ADDR				Bit N	Iap				Reset
FUNCTION	(HEX)	b	b	b	b	b	b	b	b	Value
		7	6	5	4	3	2	1	0	
Win1V	0Н	V	V	V	V	V	V	V	V	00
		1	1	1	1	1	1	1	1	Н
		m	m	m	m	m	m	m	m	
		i	i	i	i	i	i	i	i	
		n	n	n	n	n	n	n	n	
		3	2	1	0	3	2	1	0	
Win1HS	1H	Н	Н	Н	Н	Н	Н	Н	Н	00
		1	1	1	1	1	1	1	1	Н
		m	m	m	m	m	m	m	m	
		i	i	i	i	i	i	i	i	
		n	n	n	n	n	n	n	n	
		4	3	2	1	0		t		

WIn1HE	2Н	Н	Н	Н	Н	Н	Н	Н	Н	00
		1	1	1	1	1	1	1	1	Н
		m	m	m	m	m	m	m	m	
		a	a	a	a	a	a	a	a	
		X	x	X	x	X	X	X	X	
		4	3	2	1	0				
Win2V	4H	V	V	V	V	V	V	V	V	00
		2	2	2	2	2	2	2	2	Н
		m	m	m	m	m	m	m	m	
		i	i	i	i	i	i	i	i	
		n	n	n	n	n	n	n	n	
		3	2	1	0	3	2	1	0	
Win2HS	5H	Н	Н	Н	Н	Н	Н	Н	Н	00
		2	2	2	2	2	2	2	2	Н
		m	m	m	m	m	m	m	m	
		i	i	i	i	i	i	i	i	
		n	n	n	n	n	n	n	n	
		4	3	2	1	0		t		
Win2HE	6Н	Н	Н	Н	Н	Н	Н	Н	Н	00
		2	2	2	2	2	2	2	2	Н
		m	m	m	m	m	m	m	m	
		a	a	a	a	a	2	2	2	
		X	X	X	X	X	R	G	В	
	_	4	3	2	1	0				
Win3V	8H	V	V	V	V	V	V	V	V	00
		3	3	3	3	3	3	3	3	Н
		m	m	m	m	m	m	m	m	
		i	i	i	i	i	i	i	i	
		n	n	n	n	n	n	n	n	
Winding	011	3	2	1	0	3	2	1	0	00
Win3HS	9Н	H	H	H	H	H	H	H 3	H	00
		3	3	3	3	3	3		3	Н
		m i	m i	m i	m i	m i	m i	m i	m i	
		n 4	n 3	n 2	n 1	n 0	n	n t	n	
Win3HE	AH	H	Н	Н	Н	Н	Н	Н	Н	00
VVIII JIII	AII	3	3	3	3	3	3	3	3	H
		m	m	m	m	m	m	m	m	11
		a	a	a	a	a	3	3	3	
		X	X	X	X	X	R	G	В	
		4	3	2	1	0	1			
	<u> </u>	_т	,		1	J	<u> </u>	<u> </u>	<u> </u>	

Win AV	CH	V	17	17	V	17	17	17	17	00
Win4V	СН	4	V 4	V 4	4	V 4	V 4	V 4	V 4	00 H
		m H	m	m	m	m 4	m	m H	m 4	п
		i	i	i	i	a	a	a	a	
		n	n	n	n	X	X	X	X	
		3	2	1	0	3	2	1	0	
Win4HS	DH	Н	Н	Н	Н	Н	W	W	W	00
		4	4	4	4	4	i	i	i	Н
		m	m	m	m	m	n	n	n	
		i	i	i	i	i	4	4	4	
		n	n	n	n	n	Е	Н	I	
		4	3	2	1	0		Т		
Win4HE	EH	Н	Н	Н	Н	Н	W	W	W	00
		4	4	4	4	4	i	i	i	Н
		m	m	m	m	m	n	n	n	
		a	a	a	a	a	4	4	4	
		X	X	X	X	X	r	g	b	
		4	3	2	1	0				
Win1SH	3Н	W	W	W	W	W	W	W	W	00
		1	1	1	1	1	1	1	1	Н
		S	S	S	S	S	S	S	S	
		Н	Н	Н	Н	Н	Н	Н	Н	
		C	C	C	С	W	W	H	Н	
THE OCH		2	1	0	n	1	0	1	0	0.0
Win2SH	7H	W	W	W	W	W	W	W	W	00
		2	2	2	2 S	2	2	2	2	Н
		S H	S	S	S H	S	S H	S H	S	
		С	H C	H C	О	H W	П W	Н	H H	
		2	1	0	n	1	0	п 1	0	
Win3SH	ВН	W	W	W	W	W	W	W	W	00
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	211	3	3	3	3	3	3	3	3	Н
		S	S	S	S	S	S	S	S	
		Н	Н	Н	Н	Н	Н	Н	Н	
		С	С	С	О	W	W	Н	Н	
		2	1	0	n	1	0	1	0	
WiN4SH	FH	W	W	W	W	W	W	W	W	00
		4	4	4	4	4	4	4	4	Н
		S	S	S	S	S	S	S	S	
		Н	Н	Н	Н	Н	Н	Н	Н	
		C	C	C	О	W	W	Н	Н	
		2	1	0	n	1	0	1	0	

OSDFAddr:Font RAM ADDRESS Pointer,

ADDRESS:56H

There are 63 locations for Font RAM. The updating or retrieving can be directed to any address by an internal address pointer. Before WRITE or after READ, the address pointer will be increased automatically. Be aware each font site comprises 20 font row. So, every 20 words transaction, the content of OSDFAddr will be increased by one. Note Font code 3FH is reserved as a space code; so the data filled in the location is meaningless.

The OSD fonts can be download to any font address from 00H to 3EH of the font RAM. But when they were read out, the font address should add an offset C0H which is the font number of the font ROM . In other words, when read the font RAM the address is from C0H to FEH.

OSDFontL: The 8 LSB BITS OF FONTROW

ADDRESS:57H

This is an entry window to fill the content of FONT RAM. Note every row for each font contains 12 bits. It is meant two data segment, 8 LSB bits of Font row and 4 MSB bits of Font row, will be assembled together before transferred to the FONT RAM.

OSDFontL can be rguarded as the buffer to keep the low nibble (8 bits) data before the complete data (12bits) is transferred to the Font RAM. To read back the low nibble data fron FONT RAM, a read action to OSDFontM must be done first, since a read to OSDFontMis a real trigger to get the complete 12 bits from Font RAM.

OSDFontM: THE 4 MSB BITS OF FONTROW

ADDRESS:58H

As mention above, OSDFontM is a buffer to keep the upper nibble (4 bits) data before the complete data (12 bits) is transferred to the Font RAM, READ/WRITE from/to mechanism will cause 8 bits of data stored in OSDFontL assembled together with 4 bits of data received in OSDFontM and then transferred to font RAM.

Meanwhile the internal address pointer will be increased automatically. To read the content of font RAM, a READ to OSDFontM will cause a complete Font RAM word distributed to OSDFontL and OSDFontM.

After that the internal address pointer is increased automatically.

Model No.: LCT-17HT

OSDAT: FONT CODE ATTRIBUTE;

ADDRESS: 59 H

This is an entry window to update the content of the Display RAM. Note every word contains 17 bits. Row Attribute, located at the first column, includes 16 bits. It is meant two data segments, 8 bits of Font Code attribute (for Row Attribute, it stands for 8 low nibble bits; i.e. EOD field, Shadow mode field, Character Width, Character Height fields and the LSB of the field of the programmable character height) and 9 bits of Font code (for Row Attribute, it stands for 8 upper nibble bits), will be assembled together before transferred to the Display RAM.

OSDAT can be regarded as the buffer to keep the low nibble (8 bits) data before the complete data (16 bits for Display Font; 16 bits for Row Attribute) is transferred to the Display RAM. In many occasions, a series of display stream might share the same attribute. For this case, OSDAT is just needed to be written once, and then the attribute stored in this buffer will be cascaded together with upper nibble data (9 bits for Display Font; 8 bits for Row Attribute) to form the complete word for Display RAM.

To read back the attribute or low nibble data from Display RAM, a read action to OSDDT must be done first, since a read to OSDDT is a real trigger to get the complete 16 bits from Display RAM.

OSDDT: FONT CODE (INCLUDING SPACE CODE, FF H),

ADDRESS: 5A H

As above mentioned, OSDDT is a buffer to keep the 8 bits of Font code or upper nibble (8 bits) of the row attribute data before the complete data is transferred to the Display RAM. In the READ/WRITE mechanism of the Display RAM, READ/WRITE from/to OSDDT is actually a real trigger to start the operation. To update the Display RAM, a WRITE to OSDDT will cause 8 bits of data stored in OSDAT assembled together with of data received in OSDDT and then transferred to Display RAM. Meanwhile, the address pointer will be increased automatically. To read the content of Display RAM, a READ to OSDDT will cause a complete Display RAM word distributed to OSDAT and OSDDT. After that, the address pointer will be increased automatically.

OSDADL: DISPLAY RAM ADDRESS POINTER FOR LOWER PART (0 - 255),

ADDRESS: 5B H

There are 512 locations for Display RAM. The updating or retrieving can be directed to any address by an internal address pointer. For the low range (address 0 - 255), a WRITE to OSDADL will forward the address directly to the internal address pointer without offset. A READ from OSDADL will get the low nibble (bit 0 to Bit 7) of the internal address pointer.

Model No.: LCT-17HT

OSDADH: DISPLAY RAM ADDRESS POINTER FOR UPPER PART (256 -511),

ADDRESS: 5C H

It is similar to OSDADL. However, this register covers the upper range (address 256 - 511) of the Display RAM. A WRITE to OSDADH will cause the address transferred from serial interface to be added by 256. For instance, if 200 is written to OSDADH, then actually 456 (200+256) will be filled in the internal address pointer. A READ from OSDADH will get the upper nibble (bit 1 to Bit 8) of the internal address pointer.

SYSCONTROL: SYSTEM CONTROL REGISTER,

ADDRESS: C2 H

BITS	MNEMONIC	DESCRIPTION
7	WinMask	Determine whether the outer OSD area of the defined window domain is
		displayed (WinMask = 0) or not (WinMask = 1)
6	FadeRate	Determine the fade in/out rate, 0.5 sec (FadeRate = 0) or 0.25 sec (FadeRate = 1)
5	VintOrEndL	Selection between the leading edge of Vsync and the last scanning line reached
4	VLVL	Read only bit to indicate the polarity of Vsync
3	WinFB_N	Determine if FB always goes low in Window color rendering
2	Vint	Enable interrupt signal to MCU
1-0	CLKmux1-0	Divider to derive OSDCLK

Note:

1. The clock used for OSD circuitry and Serial interface, fOSD is derived from fPclk as follows: fOSD = fPclk / (CLKMUX)

CLKMUX1	CLKMUX0	CLKMUX
0	0	1
1	0	2
1	1	3

- 2. If VINT is set, then Intensity pin will not deliver Intensity color. Instead, either a wide pulse indicating the leading edge of Vsync (if VintOrEndL from SystemControl is clear) or a wide pulse highlighting the last scanning line for ending display (if VintOrEndL from SystemControl2 is set; when the last scanning line of the last display row is reached, this signal will be always asserted until Vsync coming), will show on the Intensity pin.
- 3. When WinFB_N is clear, FB pin deliver High state during Characters/shadow/background or window color display. Otherwise, FB pin will always drive low when window color is displaying.

Model No.: LCT-17HT

- 4. VLVL is a read only bit. Since Vsync is always processed by the positive polarity signal internally. So, if VLVL is set, it is meant Vsync is in fly-back period. Otherwise, Vsync will be in the active stage. This function is associated with Vint bit from SysControl1 so that MCU can monitor the progress of OSD.
- 5. For VintOrEndL, please refer to Vint

OSDSPDEF: SPACE CODE DEFAULT SETTING,

ADDRESS: CAH

BITS	MNEMONI C	DESCRIPTION
7 - 6	HposStep	Horizontal moving resolution: 00 (2 dots), 01 (4 dots), 10 (6 dots), 11 (8 dots)
5 - 4	VposStep	Vertical moving resolution: 00 (2lines), 01 (4 lines), 10 (6 lines), 11 (8 lines)
3	R	Red Color of color index
2	G	Green Color of color index
1	В	Blue Color of color index
0	I	Intensity Color of color index

Note:

1. If SPace code is not present yet, OSDSPdef defines the default color setting for shadow/background color.

OSDSTARTROW: DISPLAY STARTING ROW,

ADDRESS: CBH

BITS	MNEMONI C	DESCRIPTION
7 - 6	Not used	Should be kept at 0000
5	G8	MSB of Graphic_Start and Graphic_End
4	D8	MSB of OSDDT
3 - 0	Row3 - Row0	Point to the first display row in the Display RAM

Note:

1. The first row in the Display RAM, which will be mapped to the screen as the top display row, will be defined by OSDStartRow.

Model No.: LCT-17HT

OSDHPOS: HORIZONTAL STARTING POSITION OF OSD,

ADDRESS: CCH

I	BITS	MNEMONI C	DESCRIPTION
	7 - 0	Н7 - Н0	The horizontal starting position

Note:

The horizontal starting position is calculated as follows:
 Hstart position = (HposStep * OSDHpos + 35)/fOSD OSDHpos > 2

2. In order to have more reliable operation, the horizontal starting position is aligned and counted from the leading edge of Hsync fly-back signal coming from deflection circuit. It is not recommended to program too small value for OSDHpos, since the starting part might be still in the fly-back interval.

OSDVPOS: VERTICAL STARTING POSITION OF OSD,

ADDRESS: CDH

BITS	MNEMONI C	DESCRIPTION
7 - 0	V7 - V0	The vertical starting position

Note:

 The vertical starting position is calculated as follows: Vstart position = (VposStep * OSDVpos + 1)/fH OSDVpos > 1

2. In order to have more reliable operation, the vertical starting position is aligned and counted from the leading edge of Vsync fly-back signal coming from deflection circuit. It is not recommended to program too small value for OSDVpos, since the starting part might be still in the fly-back interval.

OSDCTRL2: OSD CONTROL REGISTER 2,

ADDRESS: CEH

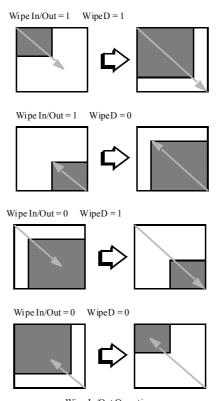
BITS	MNEMONI C	DESCRIPTION
7	WipeD	Determine the direction of Wipe in/out
6	Wipe	In/Out Wipe In or Wipe Out is rendering
5	WipeEna	Wipe In/Out enable bit
4	Not used	Should be kept at 0
3	R	Red color of color index
2	G	Green color of color index
1	В	Blue color of color index
0	I	Intensity color of color index

Model No.: LCT-17HT

Note:

 WipeD, Wipe In/Out, WipeEna flags perform the complete Wipe In or Wipe Out function. WipeD: 1 stands for OSD showing up from left-top corner to right-bottom corner; or OSD disappearing from left-top corner to right-bottom corner.

: 0 stands for OSD showing up from right-bottom corner to left-top corner; or OSD disappearing from right-bottom corner to left-top corner.


Wipe In/Out: 1 stands for OSD wiping in (OSDE in OSDCtrl must be set beforehand).

: 0 stands for OSD wiping out (after OSD disappear, OSDE will be clear also).

WipeEna: 1stands for enabling Wipe In or Out function.

0 stands for disabling wipe function.

2. In Monitor mode (Monitor bit in OSDCtrl is set), the complete screen will be covered by the color predefined by Bit 0 to Bit3. OSD menu and Windows will be displayed on top of this monitor background color.

Wipe In/Out Operation

Model No.: LCT-17HT

OSDCTRL: OSD CONTROL REGISTER,

ADDRESS: CFH

BITS	MNEMONI C	DESCRIPTION
7	Split	Determine if background color can be split
6	Htone	Half-tone/see-through effect enable bit
5	Monitor	Monitor mode enable bit
4	Нр	Hsync Polarity
3	Vp	Vsync Polarity
2	Вр	The Polarity of R, G, B, I and FB
1	Bf	Select the blinking rate
0	OSDE	OSD enable bit

Note:

- 1. Split bit is valid in boxing mode.
 - 0: The background color is not split in the midway of SPace code.
 - 1: The background color is split in the midway of Space code.
- 2. HalfTone bit is valid in boxing mode.
 - 0: No see-through effect can be performed in the boxing mode.
 - 1: The background color will become semi-transparent.
- 3. Monitor mode selection
 - 0: Normal mode; Monitor mode is disabled.
 - 1: Monitor mode is enabled
- 4. Hp, the polarity of horizontal sync, identified and programmed by MCU
 - 0: Negative polarity for Hsync.
 - 1: Positive polarity for Hsync.
- 5. Vp, the polarity of vertical sync, identified and programmed by MCU
 - 0: Negative polarity for Vsync.
 - 1: Positive polarity for Vsync.
- 6. Bp, the polarity of Red, Green, Blue, Intensity and FB outputs, depending on application needs.
 - 0: Negative polarity for video outputs.
 - 1: Positive polarity for video outputs.
- 7. Bf, the blinking rate selection,
 - 0: displaying or not displaying toggled per 32Vsync pulses
 - 1: displaying or not displaying toggled per 64Vsync pulses
- 8. OSDE, OSD enable bit
 - 0: OSD disabled; OSDE can be also clear by hardware after Wipe Out is performed
 - 1: OSD enabled

Graphic Start: GRAPHIC FONT STARTING,

ADDRESS: 3E H

BITS	MNEMONI C	DESCRIPTION
7 - 0	Gstart7 - Gstart0	8 LSB bits, associated with Bit 5 in OSDStartRow, defines the starting
		address of the graphic character font.

Graphic_End: GRAPHIC FONT ENDING,

ADDRESS:3F H

BITS	MNEMONI C	DESCRIPTION
7 - 0	Gend7 - Gend0	8 LSB bits, associated with Bit 5 in OSDStartRow, defines the end address
		of the graphic character font.

Note: The MSB(bit 8) of Gstart and Gend is at register CBH bit 5.

OSDWindow_Addr: OSD WINDOW ADDRESS REGISTER,

ADDRESS: F4H

BITS	MNEMONI C	DESCRIPTION
3-0	Addr3 - Addr0	Address port of the of OSD window register

The ZiproSX OSD support 4 OSD windows and each window was defined by 4 registers. So, there are total 16 registers range from 0H to FH. The indirect addressing mode was used to access the 16 registers.

The OSDWindw_Addr was dedicated as the address port and OSDWindow_Data was dedicated to data port. When user want to program the window's associated registers, they should write a address to address port first and then write the data to data port(F5H). Once the write operation is completed, the internal address pointer will increased by 1 automatically. So, there is no need to program the address port again when continued registers were programmed.

OSDWindow_Data: OSD WINDOW DATA REGISTER,

ADDRESS: F5H

I	BITS	MNEMONI C	DESCRIPTION
	7 - 0	Data7 - Data0	Data port of the OSD window register.

This register was the data port when access the OSD window registers. Write data to this register will trigger a write operation to one of the 16 OSD registers selected by the OSDWindow_Addr.

Model No.: LCT-17HT

Note: Following 16 OSD window registers was using indirect addressing and should be accessed through the registers F4H and F5H.

WIN1V: VERTICAL RANGE OF WINDOW 1,

ADDRESS: 0 H

BITS	MNEMONI C	DESCRIPTION
7 - 4	V1MIN3 -	The starting row of Window 1 in the Display RAM
	V1MIN0	
3 - 0	V1MAX3 -	The ending row of Window1 in the Display RAM
	V1MAX0	

WIN1HS: HORIZONTAL STARTING COLUMN OF WINDOW 1,

ADDRESS: 1 H

BITS	MNEMONI C	DESCRIPTION
7 - 3	H1MIN4 -	The starting column of Window 1 in the Display RAM
	H1MIN0	
2	Win1E	Window 1 enable bit
1	Win1Ht	Window 1 halftone enable bit
0	Win1I	The Intensity color of window color index

Note:

- 1. If Win1E is set, the Window 1 will be enabled. If more than one Windows are enabled, Window 1 will always have the highest priority.
- 2. If Win1Ht is set, the Window will become halftone window, which is completely created by the internal circuitry

WIN1HE: HORIZONTAL ENDING COLUMN OF WINDOW 1,

ADDRESS: 2 H

BITS	MNEMONI C	DESCRIPTION
7 - 3	H1MAX4 -	The ending column of Window 1 in the Display RAM
	H1MAX0	
2	Win1R	The Red color of window color index
1	Win1G	The Green color of window color index
0	Win1B	The Blue color of window color index

Model No.: LCT-17HT

WIN2V: VERTICAL RANGE OF WINDOW 2,

ADDRESS: 4 H

BITS	MNEMONI C	DESCRIPTION
7 - 4	V2MIN3 - V2MIN0	The starting row of Window 2 in the Display RAM
3 - 0	V2MAX3 - V2MAX0	The ending row of Window2 in the Display RAM

WIN2HS: HORIZONTAL STARTING COLUMN OF WINDOW 2,

ADDRESS: 5 H

BITS	MNEMONI C	DESCRIPTION
7 - 3	H2MIN4 - H2MIN0	The starting column of Window 2 in the Display RAM
2	Win2E	Window 2 enable bit
1	Win2Ht	Window 2 halftone enable bit
0	Win2I	The Intensity color of window color index

Note:

- 1. If Win2E is set, the Window 2 will be enabled. If more than one Windows are enabled, Window 2 will have the second priority.
- 2. If Win2Ht is set, the Window will become halftone window, which is completely created by the internal circuitry

WIN2HE: HORIZONTAL ENDING COLUMN OF WINDOW 2,

ADDRESS: 6 H

BIT	r S	MNEMONI C	DESCRIPTION
7 -	3	H2MAX4 -	The ending column of Window 2 in the Display RAM
		H2MAX0	
2		Win2R	The Red color of window color index
1		Win2G	The Green color of window color index
0		Win2B	The Blue color of window color index

The Window operation is demonstrated in following figure. The original display Row is started at row 4, which is pointed by OSDStartRow, and ended at row 13 (the EOD bit of the row attribute for Row 13 is set). The configuration for registers related to windows is shown in following figure. Some original display data like data in Row4 and Row13 becomes invisible (WinMask bit is set here).

It is very important to know the programmed range for Window 1 and Window 2 must be covered by the original visible domain, defined by OSDStartRow and EOD bit setting for the last display row.

Model No.: LCT-17HT

WIN3V: VERTICAL RANGE OF WINDOW 3,

ADDRESS: 8 H

(Defining the vertical range of window3, for the details, please refer to WIN1V)

WIN3HS: HORIZONTAL STARTING COLUMN OF WINDOW 3,

ADDRESS: 9 H

(Defining the horizontal starting column of window3, enable bit, Halftone control bit and color intensity it, for the details, please refer to WIN1HS)

WIN3HE: HORIZONTAL ENDINGCOLUMN OF WINDOW 3,

ADDRESS: A H

(Defining the horizontal ending column of window3, color R, G, B bits, for the details, please refer to WIN1HE)

WIN4V: Vertical range of Window 4,

ADDRESS: CH

(Defining the vertical range of window 4, for the details, please refer to WIN1V)

WIN4HS: Horizontal starting column of Window 4,

ADDRESS: DH

(Defining the horizontal starting column of window 4, enable bit, Halftone control bit and color intensity bit, for the details, please refer to WIN1HS)

WIN4HE: Horizontal ending column of Window 4,

ADDRESS: E H

(Defining the horizontal ending column of window 4, color R, G, B bits, for the details, please refer to WIN1HE)

WIN1SH:Shadow effect for window 1,

ADDRESS: 3 H

BITS	MNEMONI C	DESCRIPTION
7 – 5	W1SHC2 - W1SHC0	The color of the window shadow
4		If set, enable the window shadow if cleared, disable the window shadow
3 – 2	W1SHW1 - W1SHW0	The width of the window shadow
1	W1SHH1 - W1SHH0	The height of the window shadow

Note:

1. The color of the window shadow is encoded as follows:

Model No.: LCT-17HT

W1SHC2	W1SHC1	W1SHC0	COLOR
0	0	0	Black
0	0	1	Blue
0	1	0	Green
0	1	1	Cyan
1	0	0	Red
1	0	1	Magenta
1	1	0	Yellow
1	1	1	White

2. The shadow width is defined as follows.

W1SHW1	W1SHW0	WIDTH: SHW (IN UNIT OF DOT)
0	0	2
0	1	4
1	0	6
1	1	8

3. The shadow height is defined as follows.

W1SHH1	W1SHH0	WIDTH: SHH (IN UNIT OF LINE)
0	0	2
0	1	4
1	0	6
1	1	8

WIN2SH: Shadow effect for window 2, ADDRESS: 7 H

(Defining the window shadow of window 2. For the details, please refer to WIN1SH)

WIN3SH: Shadow effect for window 3, ADDRESS: BH

(Defining the window shadow of window 3. For the details, please refer to WIN1SH)

WIN4SH: Shadow effect for window 4, ADDRESS: F H

(Defining the window shadow of window 4. For the details, please refer to WIN1SH)

Win1V = 8CH (Row 8 to Row 12);

Win1HS = 2CH (Starting Column = 5);

Win1HE = A6H (Ending Column = 20; Yellow)

Model No.: LCT-17HT


```
Win2V = 59H (Row 5 to Row 9);
Win2HS = 1DH (Starting Column = 3);
Win2HE = 69H (Ending Column = 13; Light Blue)
SHH1 = 11; SHH2 = 11
SHW1 = 11; SHW2 = 01
```


FIGURE 25 .This Figure Show the OSD Window Operation

6.0 REGISTER MAP HARDWARE MODE DETECTOR

TABLE 22. The register map of Hardware Mode Detector

Name: (bit)	7	6	5	4	3	2	1	0
HWDCNT	Enhwd	SelDE	Hwd_i	Vint_ren	Vint_fen	Vent- Sel	HVsep1	HVsep 0
(D0H)			nten					
83H	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
IntSrc (D1H)	-	-	Vint_R	Vint_F	VfCha	Vpolcha	HfCha	Hpolcha
					nged		nged	
00H	-	-	R	R	R	R	R	R
SyncStatus	-	Falt	FwHalf	Odd_E	Vpresence	Hpresence	Vpolarity	Hpolarity
(D2H)				ven				
00H	-	R	R	R	R	R	R	R
HperHigh	Hper11	Hper10	Hper9	Hper8	Hper7	Hper6	Hper5	Hper4
(D3H)								
00H	R	R	R	R	R	R	R	R
VhperLow	Vper3	Vper2	Vper1	Vper0	Vper3	Vper2	Vper1	Vper0
(D4H)								
00Н	R	R	R	R	R	R	R	R

TABLE 22. The register map of Hardware Mode Detector

Name: (bit)	7	6	5	4	3	2	1	0
VperHigh	Vper11	Vper10	Vper9	Vper8	Vper7	Vper6	Vper5	Vper4
(D5H)								
00H	R	R	R	R	R	R	R	R
PulCnt	EnVout	EnHout	VoutM	VoutM	HoutM	HoutM	Htolera	Htolera
(D6H)			ode1	ode0	ode1	ode0	nce1	nce0
С0Н	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
HVPwth	EOEnable	VPW3	VPW2	VPW1	VPW0	HPW2	HPW1	HPW0
(D7H)								
43H	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
PoutPolPos	VCoast	VCoast	Vshift3	Vshift2	Vshift1	Vshift0	Vout-	Hout-
(D8H)	Delay1	Delay0					Pol	Pol
00H	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
HfpHigh	Hfp9	Hfp8	Hfp7	Hfp6	Hfp5	Hfp4	Hfp3	Hfp2
(D9H)								

Model No.: LCT-17HT

4AH	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
HvfpLow	Vtolera	Vtolera	Vfp3	Vfp2	Vfp1	Vfp0	Hfp1	Hfp0
(DAH)	nce1	nce0						
18H	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
VfpHigh	Vfp11	Vfp10	Vfp9	Vfp8	Vfp7	Vfp6	Vfp5	Vfp4
(DBH)								
32H	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TABLE 23.

HW	DCNT (Ha	ardware Mode Detector Control Register, 0xD0)
7	Enhwd	Enable Hardware mode detectorEnable
		0: Disabled; (clock is sleeping also to save power)
		1: Enabled
6	SelDE	Selection between DE and Csync input (DE and Csync are mutually exclusive)
		(if SelDE = 1, HVsep is automatically set as 00)
		0: Csync is selected
		1: DE is selected
5	Hwd_inte	Enable interrupt from one of Sync signal changes: H/V frequency or Polarity change
	n	0: Disabled
		1: Enabled
4	Vint_ren	Enable interrupt at Vsync leading edge
		0: Disabled
		1: Enabled
3	Vint_fen	Enable interrupt at Vsync trailing edge
		0: Disabled
		1: Enabled
2	Vcnt_Sel	Select Vperiod count by time or by line number
		0: By time; i.e. Vclk (Hclk/11)
		1: By H line
1~0	HVsep1-H	Multiplexer to select Vsync source:
	Vsep0	00: Csync/DE + VsyncSep
		01: Hsync + VsyncSep
		10: Hsync + VsyncSep XOR Vsync
		11: Hsync + Vsync
		(if SeIDE = 1, 00 is chosen, i.e. DE is treated as one kind of Csync)

Model No.: LCT-17HT

IntS	re (Interrup	t Source, 0xD1)					
5	Vint_R	Interrupt is caused by Vsync leading edge					
		: Vsync leading edge not happened					
		1: Vsync leading edge happened					
4	Vint_F	Interrupt is caused by Vsync trailing edge					
		0: Vsync trailing edge not happened					
		1: Vsync trailing edge happened					
3	VfChanged	Interrupt is caused by V frequency change					
		0: V frequency not changed					
		1: V frequency changed					
2	VpolCha	Interrupt is caused by V polarity change					
		0: V polarity not changed					
		1: V polarity changed					
1	HfChanged	Interrupt is caused by H frequency change					
		0: H frequency not changed					
		1: H frequency changed					
0	HpolCha	Interrupt is caused by H polarity change					
		0: H polarity not changed					
		1: H polarity changed					

Sync	Status (H/V	sync signals status, 0xD2)						
6	Falt	Indicate whether Field contains alternating n / n+1 lines						
		: Not this format						
		1: Yes						
5	FwHalf	Indicate whether Field contains n+1/2 lines (half line)						
		0: Not this format						
		1: Yes						
4	Odd_Even	Indicate current field is Odd field or Even field						
		0: odd field/1st field; with earlier H sync						
		1: even field/2nd field; with lagged H sync						
3	Vpresence	The presence status of Vsync						
		0: Not present						
		1: Present						
2	Hpresence	The presence status of Hsync/Csync						
		0: Not present						
		1: Present						

1	Vpolarity	The polarity of Vsync			
		0: Positive polarity (Pulse width smaller than 1/4 of Vperiod)			
		1: Negative polarity (Pulse width larger than 3/4 of Vperiod)			
0	Hpolarity	The polarity of Hsync			
		0: Positive polarity (Pulse width smaller than 1/4 of Hperiod)			
		1: Negative polarity (Pulse width larger than 3/4 of Hperiod)			

Hpe	HperHigh (0xD3)		
7~0	Hperiod15 -	The high nibble of Hperiod (15 - 0)	
	Hperiod8		

VHperLow (0xD4)		
7~4	Vperiod7 -	The low nibble of Vperiod (15 - 0)
	Vperiod4	
3~0	Hperiod7 -	The low nibble of Hperiod (15 - 0)
	Hperiod4	

VperHigh (0xD5)			
7~0	Vperiod15 -	The high nibble of Vperiod (15 - 0); it is counted by clock (Hclk/11) or	
	Vperiod8	by H line, depending on VcntSel	

6.1 PulC	Cnt (H/V output puls	se control register, 0xD6)
7	EnVout	Enable VsyncOut pulse
		0: Disabled; VsyncOut is kept low
		1: Enabled
6	EnHout	Enable HsyncOut pulse
		0: Disabled; HsyncOut is kept low
		1: Enabled
5~4	VoutMode1 -	00 (FreeRun): The period of VsyncOut is programmed by 12-bit
	VoutMode0	counter, Vfper. The pulse width is programmed by 4 bit register, Vpw,
		extended to 6 bits (2, 4, 6,28, 30, 32 lines; should be able to cover fly
		back period). The output waveform is certainly in phase with HsyncOut
		01 (Loopth_st): The leading edge of VsyncOut will be roughly close to
		the incoming Vsync, however, snapped to the leading edge of incoming
		HsyncOut; if the pulse of incoming Vsync is missing, an artificial pulse
		will be inserted with pulse width defined by VPW. The tailing edge of
		VsyncOut is also close to the tailing edge of the inputted Vsync but
		snapped to the leading edge of HsyncOut

Model No.: LCT-17HT Version: 1.0

		10 (R_aligned): The leading edge of VsyncOut will be shifted ahead or
		after the leading edge of Vsync based on the programmed value,
		however, snapped to the leading edge of incoming HsyncOut; if the
		pulse of incoming Vsync is missing, an artificial pulse will be inserted
		with pulse width defined by VPW. The pulse width in this mode is also
		programmable by VPW.
		11 (Loopth): Completely copy the shape of the incoming Vsync
3~2	HoutMode1 -	00 (FreeRun) : The period of HsyncOut is programmed by 10-bit
	HoutMode0	counter, Hfper. The pulse width is programmed by 3-bit register, HPW
		(0->0.28us, 1->0.59us, 2-> 1.12us, 3->1.40us, 4->1.68us, 5->1.96us,
		6->2.23us, 7 ->2.51us)
		01 (Loopth_st) : The HsyncOut will be snapped to the rising/falling
		edge of incoming Hsync; if the pulse of incoming Hsync is missing, an
		artificial pulse will be inserted with pulse width defined by HPW. The
		serration pulses are still kept as the incoming Hsync. The artificial pulse
		will be inserted after Hperiod/4 + 2 is counted (2 is the tolerance
		parameter)
		10 (R_aligned): The leading edge of the output Hsync is aligned with
		the incoming Hsync. However, the pulse width is defined by HPW. The
		pulse occurred in the midway of Hsync during serration period is
		suppressed (Hperiod/8 - 8 is the threshold). An artificial pulse will be
		inserted while incoming pulse is missing
		11 (Loopth): Completely copy the shape of the incoming Hsync
1~0	Htolerance1 -	The definition of H frequency/count deviation is programmable:
	Htolerance0	00: +/- 4 counts
		01: +/- 8 counts
		10: +/- 16 counts

HVPwth (The Pulse Width of H/V sync output , 0xD7)				
7	EOEnable	The selection of even/odd flag.		
		0: (default) even/odd flag will be disabled.		
		1: even/odd flag will be readable and used		
6~3	Vpw3 - Vpw0	There are 16 programmable values to set the pulse width of VsyncOut		
		2*(Vpw + 1) => 2, 4, 6, 30, 32 H lines.		

2~0	Hpw2 - Hpw0	The pulse width of Hsync Output:
		000: 4(0.28us)
		001: 8(0.59us)
		010: 16(1.12us)
		011: 20(1.40us)
		100: 24(1.68us)
		101: 28(1.96us)
		110: 32(2.23us)
		111: 36(2.51us)

PoutPoll	Pos (The polarity of	H/V sync output and the position of VsyncOut, 0xD8)
7~6	VCoastDelay1-	When VsyncOut signal is going to scaler as a V sync signal internally,
	VCoastDelay0	this signal is called VCoast. This control register will generate VCoast
		Delay by delaying the designated numbers of Hsync at the rising edge of
		the VsyncOut. The falling edge is almost the same as VsyncOut.
		00 : VCoast is the same as VsyncOut
		01 : VCoast rising edge is delayed by 1 Hsync from VsyncOut
		10 : VCoast rising edge is delayed by 2 Hsync from VsyncOut
		11 : VCoast rising edge is delayed by 3 Hsync from VsyncOut
		Make sure the VsyncOut width is larger the number of Hsync delay,
		otherwise VCoast can not have a correct falling edge.
5~2	Vshift3 - Vshift0	Vshift(3) = 1 (Leading edge of VsyncOut ahead the incoming Vsync):
		Vshift2 - Vshift0=
		000: Ahead 1 H line
		001: Ahead 2 H lines
		010: Ahead 3 H lines
		011: Ahead 4 H lines
		100: Ahead 5 H lines
		101: Ahead 6 H lines
		110: Ahead 7 H lines
		111: Ahead 8 H lines
		Vshift(3) = 0 (Leading edge of V syncOut lag the incoming V sync):
		Vshift2 - Vshift0=
		000: Kept at the same position as incoming Vsync
		001: After 1 H line
		010: After 2 H lines
		011: After 3 H lines
		100: After 4 H lines
		101: After 5 H lines
		110: After 6 H lines
		111: After 7 H lines

1	VoutPol	The polarity of VsyncOut
		0: Positive polarity (Pulse width smaller than 1/4 of VsyncOut)
		1: Negative polarity (Pulse width larger than 3/4 of VsyncOut)
0	HoutPol	The polarity of HsyncOut
		0: Positive polarity (Pulse width smaller than 1/4 of HsyncOut)
		1: Negative polarity (Pulse width larger than 3/4 of HsyncOut)

HfpHigh (0xD9)			
7~0	Hfperiod9 -	The high nibble of H free run period (9 - 0)	
	Hfperiod2		

HvfpLow (0xDA)				
7~6	Vtolerance1 -	The definition of V frequency/count deviation is programmable:		
	Vtolerance0	00: +/- 4 counts		
		01: +/- 8 counts		
		10: +/- 16 counts		
		11: +/- 88 counts		
5~2	Vfperiod3 -	The low nibble of V free run period (11 - 0)		
	Vfperiod0			
1~0	Hfperiod1 -	The low nibble of H free run period (9 - 0)		
	Hfperiod0			

VfpHigh (0xDB)		
7~0	Vfperiod11 -	The high nibble of V free run period (11 - 0)
	Vfperiod4	

7.0 REGISTER DEFINITION FOR TCON (TIMING CONTROL)

The 2-wire serial bus slave address of this chip is 1111100 (bin) (or F8 hex):

TABLE 24. PANORAMA OF SUB-ADDRESS REGISTER

LOV	LOW NIBBLE OF SUBADDRESS																
	Addr	X0	X1	X2	Х3	X4	X5	X6	X7	X8	X9	XA	XB	XC	XD	XE	XF
	(hex)	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
HI	0X	rese	TC_	TC_													
GH	Н	ved	MAJ	MAJ													
NI			OR1	OR2													
BB	1X	GPC	GPO0 Programming Registers									LP P	rogra	mmin	g Reg	isters	
LE	Н																
	2X	GPC	GPO1 Programming Registers CLKV Programming														
	Н	Regi	isters														
	3X	STH	Progra	ammin	ıg	POL	Progra	ammir	ng	CLK	H Pro	I Programming Registers					
	Н																
	4X	STV	Progra	ammir	ıg												
	Н	and CLKV_VSTART															
	5X	GPC	GPO2 Programming Registers								RES	RESERVED					
	Н																
	6XFX	RES	ERVE	D													
	Н																

TC_	MAJORI (TO	CON MAJOR control register 1, 02H)	Default
7	LP_PHASE	The phase selection of the edges of LP pulse signal with respect to the	0
		internal pixel clock.	
		0: (default) Aligned with the rising edge of CLKH.	
		1: Aligned with the falling edge of CLKH.	
		NOTE: Internal pixel clock, CLKH, will send to Pin 63 which can be	
		inverted with programmable delay. Please refer to PHCLK_INV and	
		PHCLK_OP in RegisterOUTCTR0 or 03hex.	
6	TI_MODE	STV start position (This bit also defines the CLKV start position)	0
		0: (default) Normal start.	
		1: Late start.	
5	POL_MODE	The toggle duration of POL (polarity output signal) pin	0
		0: (default) toggle per H line.	
		1: toggle per 2H lines	

Model No.: LCT-17HT

4	CLKH_OFF	The CLKH signal can be turned off during the non-active display period.	0
		0: (default) CLKH output signal is always available.	
		1: CLKH signal will be turned off during the non-active display period.	
		The duration is defined by the TC_CLKH_VSTART,	
		TC_CLKH_VACTIVE, TC_CLKH_HSTART, and	
		TC_CLKH_HACTIVE registers.	

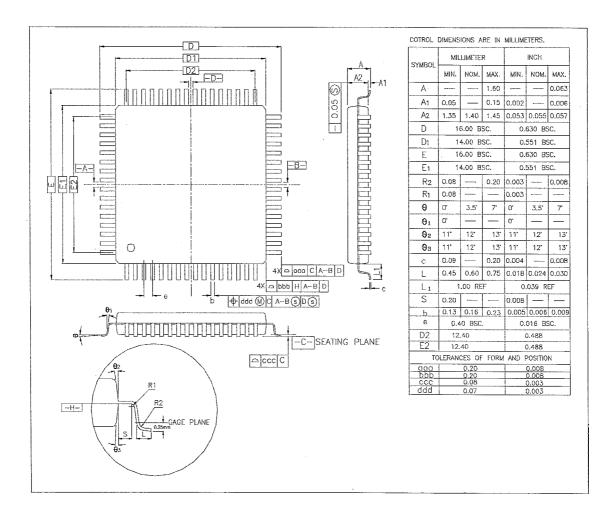
TC_	MAJORI (TCO	ON MAJOR control register 1, 02H)	Default
3	RGB_BUS_S	Data bus group delay for EMI reduction.	0
	KEW	0: (default) The data bus of RGB signals are distributed as	
		0.0/1.0/2.0ns.	
		1: The data bus of RGB signals are distributed as 0.0/2.0/4.0ns.	
2	DIRECTION_	The driver IC R/L direction control.	0
	SCMD	0: (default) The output of STV1 and STH1 pins are available. And	
		RLSC is high.	
		(Note: The output of STV3 and STH8 pins have no signals.)	
		1: The output of STV3 and STH8 pins are available. And RLSC is low.	
		(Note: The output of STV1 and STH1 pins have no signals.)	
1	INVERSE_	The inversion of HMSO and HMSE signals.	0
	HMS	0: (default) No inversion.	
		1: The HMSO and HMSE signals will be inversed	
0	ENABLE_	The operation of HMSO and HMSE signals.	1
	HMS	0: The HMSO and HMSE signals will be kept at high or low (In a	
		word, HMSO=HMSE=INVERSE_HMS).	
		1: (default) The operation of HMSO and HMSE is enabled.(Note:	
		HMSO and HMSE will be calculated separately)	

TC	TC_MAJOR2 (TCON MAJOR control register 2, 03H)							
7	INVERSE_	The inversion of CLKV clock.	0					
	CLKV	0: (default) No inversion.						
		1: Inversed CLKV.						
6	TCON_8BIT	TCON can be configured for 8-bit or 6-bit (for each RGB) TFT-LCD	0					
		panel						
		0: (default) TCON is configured for 8-bit (for each RGB) panel.						
		1: TCON is configured for 6-bit (for each RGB) panel						
5	SINGLE_HMS	This register defines the operation of HMS is based on two single port						
		(24/18 bits) or one dual port (48/36 bits)						
		0 : EVEN/ODD is calculated separately						
		1 : EVEN/ODD is calculated together						

REGISTER FUNCTION	ADDR	RESET	R/W	Description
	(HEX)	VALUE		
	MSB:ODD			
	LSB:EVEN			
Major feature Control	01	00	W	Major programming features of the
Register TC_MAJOR1[7:0]				timing controller 1
Major feature Control	02	00	W	Major programming features of the
Register TC_MAJOR2[7:0]				timing controller 2
Reserved	03-0F	00	W	
GPO0 Horizontal Start	11, 10	01,28	W	Define the GPO0 horizontal start
TC_GPO0_HSTART[10:0]				counter value.
GPO0 Horizontal Active	13, 12	02,94	W	Define the GPO0 horizontal active
TC_GPO0_HACTIVE[10:0]				duration counter value.
GPO0 Vertical Start	15, 14	00,23	W	Define the GPO0 vertical start counter
TC_GPO0_VSTART[10:0]				value.
GPO0 Vertical End	17, 16	03,00	W	Define the GPO0 vertical end duration
TC_GPO0_VEND[10:0]				counter value.
GPO0 Control Register	18	00	W	Define the GPO0 control value.
TC_GPO0_CONTROL[7:0]				TC_GPO0_CONTROL[1:0] defines
				= 00 : no logical operation,
				= 01 : inverted,
				= 10 : toggled on rising edge,
				= 11 : toggled then inverted.
Reserved	19	00	W	
LP Horizontal Start	1B, 1A	01,28	W	Define the LP signal horizontal start
TC_LP_HSTART[10:0]				counter value.
LP Horizontal Active	1C	04,00	W	Define the LP signal horizontal active
TC_LP_HACTIVE[6:0]				duration counter value.
Reserved	1D	00	W	
LP Vertical End	1F, 1E	00,23	W	Define the LP signal vertical end
TC_LP_VEND[10:0]				counter value.
GPO1 Horizontal Start	21, 20	01,28	W	Define the GPO1 horizontal start
TC_GPO1_HSTART[10:0]				counter value.
GPO1 Horizontal Active	23, 22	02,94	W	Define the GPO1 horizontal active
TC_GPO1_HACTIVE[10:0]				duration counter value.
GPO1 Vertical Start	25, 24	00,23	W	Define the GPO1 vertical start counter
TC_GPO1_VSTART[10:0]				value
GPO1 Vertical End	27, 26	03,00	W	Define the GPO1 vertical end duration
TC_GPO1_VEND[10:0]				counter value.

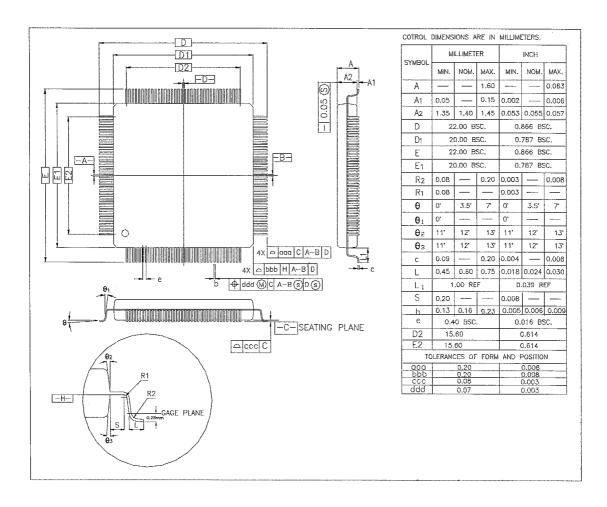
GPO1 Control Register	28	00	W	Define the GPO1 control value
TC_GPO1_CONTROL[7:0]				TC_GPO1_CONTROL[1:0]
				= 00 : no logical operation,
				= 01 : inverted,
				= 10 : toggled on rising edge,
				= 11 : toggled then inverted.
				The value will then perform logical
				operation (with the signal from GPO0)
				defined by TC GPO1 CONTROL[3:2]
				defines
				= 00: no logical operation,
				= 01: AND with TC GPO0,
				= 10: OR with TC_GPO0,
				= 11: select TC GPO0 or TC GPO1
				alternately on the rising edge of HS or
				VS which is selected by
				TC_GPO1_CONTROL[4]
				= 0 : toggle on HS
				= 1: toggle on VS.
Reserved	29	00	W	
CLKV Horizontal Start	2B, 2A	01,28	W	Define the CLKV signal horizontal start
TC_CLKV_HSTART[10:0]				counter value.
CLKV Horizontal Active	2D, 2C	04,00	W	Define the CLKV signal horizontal
TC_CLKV_HACTIVE[9:0]				active duration counter value.
CLKV Vertical End	2F, 2E	00,23	W	Define the CLKV signal vertical end
TC_CLKV_VEND[10:0]				counter value. NOTE: The vertical start
				of the CLKV signal is defined by the
				position of STV pulse (so called
				Ti_mode). Also the V start value of
				CLKV is defined at
				TC_STVCLKV_VSTRAT[3:0].
STH Horizontal Start	31, 30	01,28	W	Define the STH signal horizontal start
TC_STH_HSTART[10:0]				counter value. NOTE: The active
				duration of STH pulse is always
				one-pixel width.
STH Vertical End	33, 32	00,23	W	Define the STH signal vertical end
TC STH VEND[10:0]				counter value

POL Horizontal Start	35, 34	01,28	W	Define the POL signal horizontal start
TC POL HSTART[10:0]				counter value. NOTE: The POL signal
				can be toggled every H line or every 2H
				lines. Please refer to the bit
				POL_MODE in TCON_MAJOR
				register
POL Vertical End	37, 36	00,23	W	Define the POL signal vertical end
TC_POL_VEND[10:0]				counter value.
CLKH Horizontal Start	39, 38	01,28	W	Define the CLKH horizontal start
TC_CLKH_HSTART[10:0]				counter value.
				NOTE: To save power consumption,
				CLKH can be deactivated during the
				non-active display period. Please refer
				to CLKH_OFF in TCON_MAJOR
				register.
CLKH Horizontal End	3B, 3A	04,00	W	Define the CLKH horizontal end
TC_CLKH_HEND[10:0]				duration counter value.
CLKH Vertical Start	3D, 3C	00,23	W	Define the CLKH vertical start counter
TC_CLKH_VSTART[10:0]				value.
CLKH Vertical End	3F, 3E	03,00	W	Define the CLKH vertical end duration
TC_CLKH_VEND[10:0]				counter value.
STV Horizontal Start	41, 40	01,28	W	Define the STV signal horizontal start
TC_STV_HSTART[10:0]				counter value.
STV Horizontal Active	43, 42	00,14	W	Define the STV signal horizontal active
TC_STV_HACTIVE[11:0]				counter value
STV and CLKV Vertical	44	00	W	Define the vertical start counter value of
Start				STV and CLKV.
TC_STVCLKV_VSTRAT[7:0]				TC_STVCLKV_VSTRAT[3:0] is for
				the V start value of CLKV and
				TC_STVCLKV_VSTRAT[7:4] is for
				the V start value of STV
TC_LNUM_AHEAD_DE[10:0]	46,45	00,01	W	Define the number of lines that is ahead
				DENA; the Vertical value is calculated
				from this point
TC_STH_WIDTH[7:0]	47	00	W	Define the width of STH pulse
Reserved	48-4F	00	W	
GPO2 Horizontal Start	51, 50	01,28	W	Define the GPO2 horizontal start
TC_GPO2_HSTART[10:0]				counter value.
GPO2 Horizontal Active	53, 52	02,94	W	Define the GPO2 horizontal active
TC_GPO2_HACTIVE[10:0]				duration counter value

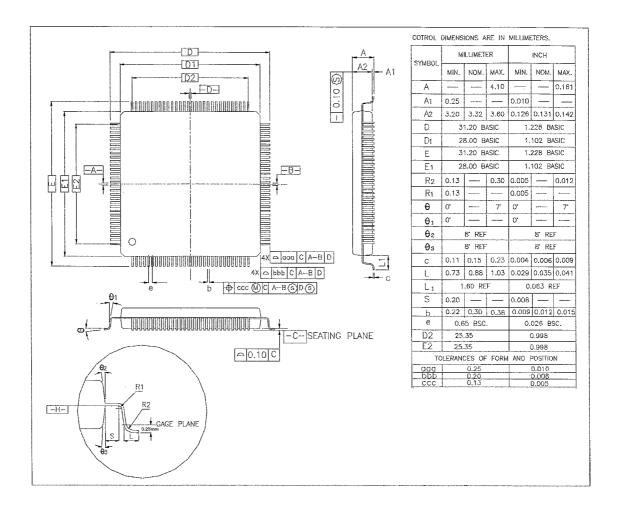


GPO2 Vertical Start	55, 54	00,23	W	Define the GPO2 vertical start counter
TC_GPO2_VSTART[10:0]				value.
GPO2 Vertical End	57, 56	03,00	W	Define the GPO2 vertical end duration
TC_GPO2_VEND[10:0]				counter value
GPO2 Control Register	58	00	W	Define the GPO2 control value.
TC_GPO2_CONTROL[7:0]				TC_GPO2_CONTROL[1:0]
				= 00 : no logical operation,
				= 01 : inverted,
				= 10 : toggled on rising edge,
				= 11 : toggled then inverted.
				The value will then perform logical
				operation (with the signal from GPO1)
				defined by TC_GPO2_CONTROL[3:2]
				defines
				= 00: no logical operation,
				= 01: AND with TC_GPO1,
				= 10: OR with TC_GPO1,
				= 11: select TC_GPO1 or TC_GPO2
				alternately on the rising edge of HS or
				VS which is selected by
				TC_GPO2_CONTROL[4]
				= 0 : toggle on HS
				= 1: toggle on VS
Reserved		00	W	

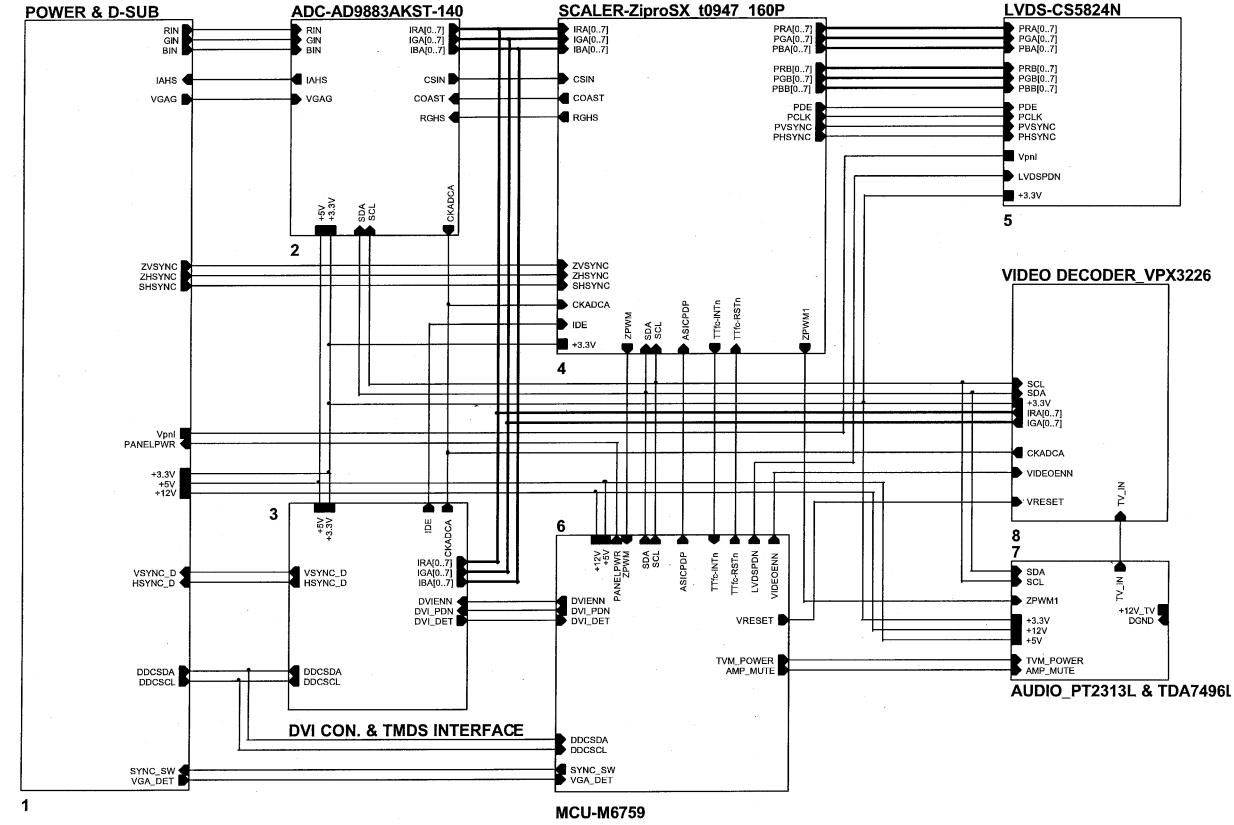
8.0 PACKAGE OUTLINE


8.1 1281 LQFP

Model No.: LCT-17HT

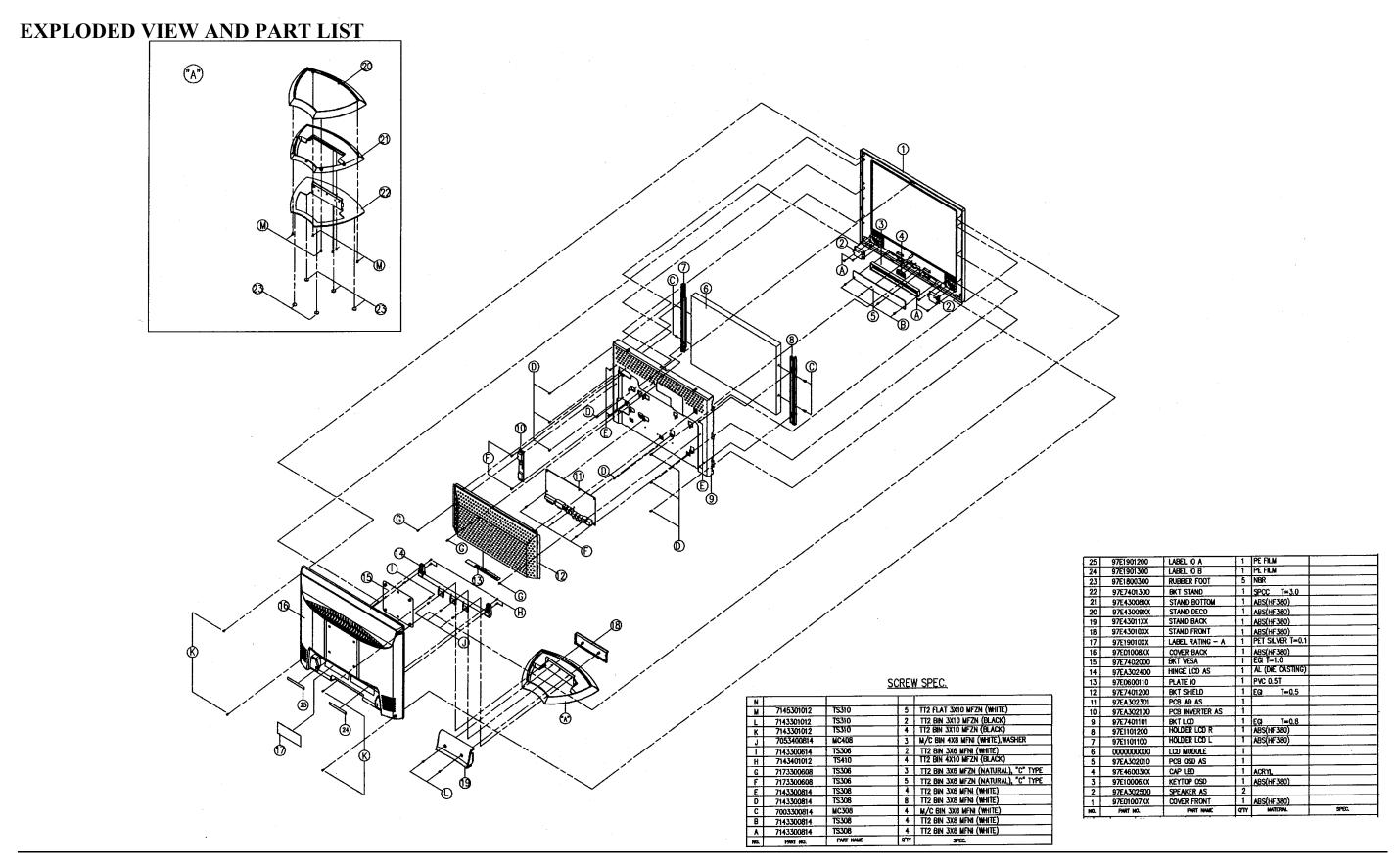

8.2 160L LQFP

Model No.: LCT-17HT


8.3 160 QFP

Model No.: LCT-17HT

BLOCK DIAGRAM



TV TUNER

