Technical world ${ }^{(8)}$

Service Manual

Follow these safety, servicing and ESD precautions to prevent damage and to protect against potential hazards such as electrical shock and X-rays.

1-1 Safety Precautions

1-1-1 Warnings

1. For continued safety, do not attempt to modify the circuit board.
2. Disconnect the $A C$ power before servicing.
3. When the chassis is operating, semiconductor heat sinks are potential shock hazards.

1-1-2 Servicing the High Voltage System and Picture Tube

1. When servicing the high voltage system, remove the static charge by connecting a 10 k ohm resistor in series with an insulated wire (such as a test probe) between the chassis and the anode lead. (Disconnect the AC line cord from the AC outlet.)
2. Do not lift the picture tube by the neck.
3. Handle the picture tube only when wearing shatterproof goggles and after completely discharging the high voltage anode.

1-1-3 X-Rays and High Voltage Limits

1. Keep the high voltage below the specified maximum level. Be sure all service personnel are aware of the procedures and instructions covering X -rays.
The only potential source of X-ray in current solid state display monitors is the tube. However, the picture tube does not emit measurable X-ray radiation if the high voltage is as specified in the fire and shock hazard instruction. Only when high voltage is excessive are X -rays capable of penetrating the shell of the picture tube, including the lead in glass material.
2. It is essential that service technicians have an accurate high voltage meter available at all times. Check the calibration of this meter periodically.
3. High voltage should always be kept at the rated value, no higher. Operation at high voltages may cause failure of the picture tube or high voltage circuitry and, also under certain conditions, may produce X-rays in excess of acceptable levels.
4. When the high voltage regulator is operating properly, there is no possibility of an X-ray problem. Test the brightness and use a meter to monitor the high voltage each time a color monitor comes in for service. Make sure the high voltage does not exceed its specified value and that it is regulating correctly.
5. The picture tube is especially designed to prohibit X-ray emissions. To ensure continued X-ray protection, replace the picture tube only with one that is the same type or equivalent as the original. Carefully reinstall the picture tube shields and mounting hardware; these also provide X -ray protection.
6. When troubleshooting a monitor with excessively high voltage, avoid being unnecessarily close to the monitor. Do not operate the monitor longer than is necessary to locate the cause of excessive voltage.

1-1-4 Fire and Shock Hazard

Before returning the monitor to the user, perform the following safety checks:

1. Inspect each lead dress to make certain that the leads are not pinched or that hardware is not lodged between the chassis and other metal parts in the monitor.
2. Inspect all protective devices such as nonmetallic control knobs, insulating materials, cabinet backs, adjustment and compartment cover or shields, isolation resistor-capacitor networks, mechanical insulators, etc.

Figure1-1. Leakage Current Test Circuit
3. To be sure that no shock hazard exists, check for leakage current in the following manner:
a. Plug the AC line cord directly into a 120 Volt AC outlet. (Do not use an isolation transformer for this test)
b. Using two clip leads, connect a 1.5 k ohm, 10 watt resistor paralleled by a $0.15 \mu \mathrm{~F}$ capacitor in series with an exposed metal cabinet part and a known earth ground, such as an electrical conduit or electrical ground connected to an earth ground.
c. Use a SSVM or VOM with 1000 ohms per-volt or higher sensitivity to measure the $A C$ voltage drop across the resistor (see Figure 1-1).
d Connect the resistor to an exposed metal part having a return path to the chassis (metal cabinet, screw heads, knobs, shafts, escutcheon, etc.) and measure the AC voltage drop across the resistor.
e. Any reading of 5.25 Volt RMS (this corresponds to 3.5 milliampere AC) or more is excessive and indicates a potential shock hazard. Correct the shock hazard before returning the monitor to the user.

1-1-5 Product Safety Notices

Some electrical and mechanical parts have special safety-related characteristics which are often not evident from visual inspection. The protection they give may not be obtained by replacing them with components rated for higher voltage, wattage, etc. Parts that have special safety characteristics are identified by $\widehat{\$}$ on schematics and parts lists. A substitute replacement that does not have the same safety characteristics as the recommended replacement part might create shock, fire and / or other hazards. Product safety is under review continuously and new instructions are issued whenever appropriate.

1-2 Servicing Precautions

Warning: An electrolytic capacitor installed with the wrong polarity might explode.

Caution: Before servicing instruments covered by this service manual and its supplements, read and follow the Safety Precautions section of this manual.

Note: If unforeseen circumstances create conflict between the following servicing precautions and any of the safety precautions, always follow the safety precautions.

1-2-1 General Servicing Precautions

1. Servicing precautions are printed on the cabinet. Follow them.
2. Always unplug the unit's AC power cord from the AC power source before attempting to: (a) remove or reinstall any component or assembly, (b) disconnect all electrical plugs or connectors, (c) connect a test component in parallel with an electrolytic capacitor.
3. Some components are raised above the printed circuit board for safety. An insulation tube or tape is sometimes used. The internal wiring is sometimes clamped to prevent contact with thermally hot components. Reinstall all such elements to their original position.
4. After servicing, always check that the screws, components and wiring have been correctly reinstalled. Make sure that the portion around the serviced part has not been damaged.
5. Check the insulation between the blades of the AC plug and accessible conductive parts (examples: metal panels, input terminals and earphone jacks).
6. Insulation Checking Procedure: Disconnect the power cord from the AC source and turn the power switch ON. Connect an insulation resistance meter (500 V) to the blades of the AC plug.

The insulation resistance between each blade of the AC plug and accessible conductive parts (see above) should be greater than 1 megohm.
7. Never defeat any of the $B+$ voltage interlocks. Do not apply AC power to the unit (or any of its assemblies) unless all solid-state heat sinks are correctly installed.
8. Always connect a test instrument's ground lead to the instrument chassis ground before connecting the positive lead; always remove the instrument's ground lead last.

1-3 Electrostatically Sensitive Devices (ESD) Precautions

Some semiconductor (solid state) devices can be easily damaged by static electricity. Such components commonly are called Electrostatically Sensitive Devices (ESD). Examples of typical ESD devices are integrated circuits and some field-effect transistors. The following techniques will reduce the incidence of component damage caused by static electricity.

1. Immediately before handling any semiconductor components or assemblies, drain the electrostatic charge from your body by touching a known earth ground.
Alternatively, wear a discharging wrist-strap device. To avoid a shock hazard, be sure to remove the wrist strap before applying power to the monitor.
2. After removing an ESD-equipped assembly, place it on a conductive surface such as aluminum foil to prevent accumulation of electrostatic charge.
3. Do not use freon-propelled chemicals. These can generate electrical charges sufficient to damage ESDs.
4. Use only a grounded-tip soldering iron to solder or desolder ESDs.
5. Use only an antistatic solder removal device. Some solder removal devices not classified as "antistatic" can generate electrical charges sufficient to damage ESDs.
6. Do not remove a replacement ESD from its protective package until you are ready to install it. Most replacement ESDs are packaged with leads that are electrically shorted together by conductive foam, aluminum foil or other conductive materials.
7. Immediately before removing the protective material from the leads of a replacement ESD, touch the protective material to the chassis or circuit assembly into which the device will be installed.

Caution : Be sure no power is applied to the chassis or circuit and observe all other safety precautions.
8. Minimize body motions when handling unpackaged replacement ESDs. Motions such as brushing clothes together, or lifting your foot from a carpeted floor can generate enough static electricity to damage an ESD.
9. A marks parts for ESDs on schematic diagrams and electrical parts list.

2 Reference Information

2-1 Timing Chart

This section of the service manual describes the timing that the computer industry recognizes as standard for computer-generated video signals.

Table 4-1. Timing Chart

	IBM				VESA		
	$\begin{gathered} \text { VGA1/70 Hz } \\ 640 \times 350 \end{gathered}$	VGA270 Hz 720×400	VGA3/60 Hz 640×480	XGA87hz 1024×768	$\begin{gathered} 640 / 72 \mathrm{~Hz} \\ 640 \times 480 \end{gathered}$	$\begin{gathered} 640 / 75 \mathrm{~Hz} \\ 640 \times 480 \end{gathered}$	$\begin{gathered} 800 / 56 \mathrm{~Hz} \\ 800 \times 600 \end{gathered}$
fH (kHz)	31.469	31.469	31.469	35.522	37.861	37.500	35.156
A $\mu \mathrm{sec}$	31.778	31.778	31.778	28.151	26.413	26.667	28.444
B μ Sec	3.813	3.813	3.813	3.920	1.270	2.032	2.000
Cusec	1.907	1.907	1.907	1.247	4.064	3.810	3.556
D $\mu \mathrm{sec}$	25.422	25.422	25.422	22.806	20.317	20.317	22.222
E usec	0.636	0.636	0.636	0.178	0.762	0.508	0.667
$\mathrm{fV}(\mathrm{Hz})$	70.087	70.087	59.940	86.958	72.809	75.000	56.250
0 msec	14.2688	14.268	16.683	11.500	13.735	13.333	17.778
P msec	0.064	0.064	0.064	0.113	0.079	0.080	0.057
Q msec	1.907	1.080	1.048	0.563	0.739	0.427	0.626
R msec	11.122	12.711	15.253	10.810	12.678	12.800	17.067
S msec	1.176	0.413	0.318	0.014	0.237	0.027	0.028
Clock Frequency (MHz)	25.175	28.322	25.175	44.900	31.500	31.500	36.000
Poiarity H.Sync V.Sync	Positive Negative	Negative Positive	Negative Negative	Positive Positive	Negative Negative	Negative Negative	Neg/Pos Neg/Pos
Remark	Separate						

A: Line time total	O: Frame time total
B: Sync width	P: Sync with
C: Back porch	Q: Back porch
D: Active time	R: Active time
E: Front porch	S: Front porch

Table 4-2. Timing Chart

	VESA		
	$\begin{gathered} 800 / 60 \mathrm{~Hz} \\ 800 \times 600 \end{gathered}$	$\begin{aligned} & 800 / 75 \mathrm{~Hz} \\ & 800 \times 600 \end{aligned}$	$\begin{gathered} 1024 / 60 \mathrm{~Hz} \\ 1024 \times 768 \end{gathered}$
$\mathrm{fH}(\mathrm{kHz})$	37.879	46.875	48.363
A $\mu \mathrm{sec}$	26.400	21.333	20.677
B $\mu \mathrm{sec}$	3.200	1.616	2.092
C usec	2.200	3.232	2.462
- $\mu \mathrm{sec}$	20.000	16.162	15.754
E $\mu \mathrm{sec}$	1.000	0.323	0.369
fV (Hz_{2})	60.317	75.000	60.004
0 msec	16.579	13.333	16.666
P msec	0.106	0.064	0.124
O msec	0.607	0.448	0.600
R msec	15.840	12.800	15.880
S msec	0.026	0.021	0.062
Clock Frequency (MHz)	40.000	49.500	65.000
Polarity H.Sync V.Sync	Positive Positive	Positive Positive	Negative Negative
Remark	Separate	Separate	Separate

A: Line time total	$0:$ Frame time total
B: Sync width	P: Sync with
C: Back porch	Q: Back porch
D: Active time	R : Active time
E: Front porch	S: Front porch

2-2 Semiconductor Lead Identification

PARTS	TYPE NO.	REF. NO.	-PARTS	TYPE NO.	REF. NO.
	KSC1008-Y	0404		KSC1507 2SC3503 KSC3503	0603
	VN2222LL VN0606M	0205			
				IRF9610	0408
				$\begin{aligned} & \text { 2SK1351 } \\ & \text { IRF740 } \end{aligned}$	0412
	KSC945C-Y KTC1398-Y	$\begin{aligned} & 0201,0202,0203,0204, \\ & 0206,0402,0409,0502, \\ & 0601,0607 \end{aligned}$		\|RF630	0413
				TDA8351	IC301
	$\begin{aligned} & \text { KSC733C-Y } \\ & \text { KTA1266-Y } \end{aligned}$	0401, 0405, 0407, 0410. 0501			
	$\begin{aligned} & 2 S C 4744 \\ & 2 S C 4762 \\ & \text { KSC5086 } \\ & 2 S C 5149 \\ & \text { KSC5386 } \end{aligned}$	0403		COY80-NG CQY80-XG	OP601
			8	KA3882	IC601
	6N80 2SK1358 SST6N80	0602		24LC21/P	1 C 701
	$\begin{aligned} & \text { MJE800 } \\ & \text { KSE800 } \end{aligned}$	0406	20_{1}	TDA4850	IC401
			20_{1}	SL606	IC201
	MC7805 KA7805 KIA7805P	1 C 202	$28 i_{1}^{2}$	$\begin{aligned} & \text { LM1203 } \\ & \text { KA2139 } \end{aligned}$	IC101
				LM2406T	IC102
	LM317				

3 Product Specifications

3-1 Specifications

Item Model	SC-428PT/PTL
Picture Tube:	14 -inch (36 Cm), 13.2-inch (33.5 Cm) visual; Full square/regular face tube, 90° Deflection; Antistatic silica coating; AK shadow mask
	0.28 mm Dot pitch; Non-glare
Scanning Frequency Horizontal / Vertical	$31.47 \mathrm{kHz} / 70 \mathrm{~Hz}, 31.47 \mathrm{kHz} / 60 \mathrm{~Hz}, 35.52 \mathrm{kHz} / 87 \mathrm{~Hz}, 37.5 \mathrm{kHz} / 75 \mathrm{~Hz}, 37.86 \mathrm{kHz} / 72.8 \mathrm{~Hz}$, $35.16 \mathrm{kHz} / 56 \mathrm{~Hz}, 37.88 \mathrm{kHz} / 60.3 \mathrm{~Hz}, 46.88 \mathrm{kHz} / 75 \mathrm{~Hz}, 48.36 \mathrm{kHz} / 60.00 \mathrm{~Hz}$
Display Colors Analog Input	Unlimited Colors
Maximum Resolution	Horizontal : 1024 Dots Vertical : 768 Lines
Input Signal Video Separate Sync	Analog 0.714 Vp -p Positive at 75Ω terminated TL Level Positive/Negative
Maximum Pixel Clock	65 MHz
Active Display	Horizontal : $255 \mathrm{~mm} \pm 3 \mathrm{~mm}$ Vertical : $191 \mathrm{~mm} \pm 3 \mathrm{~mm}$
Input Voltage	AC 90-264 Volt, $60 / 50 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$
Power Consumption	80 Watt (max)
Dimensions	Unit (H $\times W \times D) \quad: 14.5 \times 14 \times 14.9$ Inches $(368 \times 356 \times 379.5 \mathrm{~mm})$ Carton ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$) : $18.2 \times 18 \times 15.7$ Inches $(462 \times 457 \times 398 \mathrm{~mm})$
Weight	Net/Gross: $23.2 \mathrm{Lbs}(10.5 \mathrm{~kg}$ / / $27.6 \mathrm{Lbs}(12.5 \mathrm{~kg}$)
Environmental Considerations	Operating Temperature: $32^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$ Humidity $:$ 10% to 80% Storage Temperature $-4{ }^{\circ} \mathrm{F}$ to $113^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.45^{\circ} \mathrm{C}\right)$ Humidity $:$ 5% to 95%

- Notes: Designs and specifications are subject to change without prior notice. Model numbers with an "L" suffix comply with SWEDAC (MPRII) recommendations for reduced electromagnetic fields.

3-2 Dimensions

3-2-1 Front View

3-2-2 Side View

3-2-3 Rear View

3-2-4 Top View

Swivel angle

3-3 Pin Assignments

	15-Pin Signal Cable Connector (Figure 3-1)
	Separate
1	Red
2	Green
3	Blue
4	GND
5	DDC return
6	GND-R
7	GND-G
8	GND-B
9	Reserved
10	GND-Sync
11	GND
12	OOC Data
13	H-Sync
14	V-Sync
15	DDC Clock

Figure 3-1. Female Type

4-1 Front View and Controls

4-1-1. Front View

4-1-2 Front Control Panel

Location	Symbol	Description
1	\square	Power Button (Push)
2	\square	Power Indicator LED (Dual Color)
3	Brightness Control 4	Contrast Control 5
6	\square	Horizontal Position Control
7	\square	Vertical Position Control
8	\square	Vertical Size Contral Size Control
9	\square	Side Pin Cushion Control

Note 1: When used with a computer equipped with DPMS (VESA), this monitor is EnergyStar compliant.

Note 2: The monitor automatically returns to the normal operation state when horizontal and vertical sync returns. This occurs when you move the mouse or press a key on the keyboard.

Table 4-1. Display Power Management Signaling (DPMS) Standard

	Normal Operation	Power saving function EPA/NUTEK		
		Suspend Mode		Power Off Mode
Horizontal Sync	Active	Inactive	Active	Inactive
Vertical Sync	Active	Active	Inactive	Inactive
Video	Active	Blanked	Blanked	Blanked
Power Indicator	Green	Orange		Orange. Green Blinking
Power Consumption/hr	80 W	Less than 15W		Less than 8W

5 Disassembly and Reassembly

This section of the service manual describes the disassembly and reassembly procedures for the CQB41** Series monitors.
WARNING: These monitors contain electrostatically sensitive devices. Use caution when handling any components.

5-1 Disassembly

Caution: Disconnect the monitor from the power source before disassembling the monitor.

5-1-1 Cabinet Disassembly

1. With a pad beneath it, stand the monitor on its front with the screen facing downward and the base closest to you. Make sure nothing will damage the screen.
2. Press in the tab on the Cabinet Bottom and pull the Tilt and Swivel Base upward to remove it.
3. Working from the back of the monitor, remove the four screws.
4. Lift the rear cover up and away from the monitor.
5. Using pinch-nose pliers or long-nose pliers, carefully disconnect the Anode Cap from the CRT.

Caution: Do not touch the anode contact on the CRT.

5-1-2 Disassembling the Stand Assembly

1. Follow steps 1 and 2 in "Cabinet Disassembly," above.
2. With the words "Front" aligned on the Stand Top and Stand Base, rotate the Top counter clockwise, and pull it back to reveal the stopper snap.
3. Press the stopper snap down and continue rotating the Stand Top until Stand Base tab is free in the slot. Pull the Stand Top and Stand Base apart.

5-1-3 Removing the Video PCB

1. Follow steps 1 through 5 in "Cabinet Disassembly," above.
2. Desolder the five tabs on the underside of the Video shield.
3. Remove the Video Shield case.
4. Using a knife, cut through the silicone bond and lift off the Video PCB.
5. Disconnect wire between Video PCB and CRT ground.(CN107)
6. Desolder the CN103, CN104 and Screen wire on Video PCB.
7. Lift the cap on the CRT socket, desolder the Focus wire.
8. Lift the Video PCB and place it on a flat, level surface which is protected from static electricity.

5-1-4 Removing the Main PCB

1. Follow steps 1 through 5 in "Cabinet Disassembly," and steps 1 through 8 in "Removing the Video PCB," above.
2. If you have not already done so, disconnect the Video PCB Assembly from the Main PCB.
3. Disconnect Degaussing Coil at CN601/602 connector on Main PCB.
4. Disconnect both side CRT ground wires at CN403 and GND1. (Normal type) Disconnect both side CRT ground wires at CN403, GND1 and CN404. (MPRII type)
5. Disconnect DY connector between DY and CN302 on Main PCB.
6. Slide the Main PCB from the Front Cover Ass'y.
7. Remove the Left and Right PCB Brackets.
8. Set the Main PCB on a smooth, level surface protected from static electricity.

5-1-5 CRT Ass'y Disassembly

1. Above procedure must have been done.
2. Straighten Degaussing Coil Assembly coated metal ties and lift Coil Ass'y from the CRT.
3. Remove the four comer screws and lift CRT up and away from the Front cover assembly and place on padded surface. \triangle Do not lift the CRT by the neck.

Caution: If you will be returning this CRT to the monitor, be sure to place the CRT face down on a protective pad.

With the CRT facing downward on a protective pad, use the steps that follow to reassemble the monitor.

5-2-1 Replacing the CRT

1. Loop the CRT Ground Ass'y around the back of the CRT and under the four corner metal tabs. Position the corner with the spring last.
2. With the Front Cover Assembly lying face down on a protective pad, position the CRT so that the corner metal tabs fit properly in the Front Cover Assembly.
3. Secure the CRT Ground Ass'y and CRT at each of the four corners with the CRT screws.
4. Replace the Degaussing Coil Assembly and wrap the Coil with the plastic coated metal ties to hold the Coil in place.

5-2-2 Replacing the Main PCB

1. Replace the Left and Right PCB Brackets.
2. Carefully push the Main PCB Ass'y until it is fully inserted and you hear a click as the tabs engage on the Front Cover Ass'y.
3. Reconnect the following connectors and wires:

- DY connectors (CN302)
- CRT ground wires
- Degaussing Coil (CN601,CN602)
- Anode Cap

4. Main PCB should fit into slots in rear cabinet.

5-2-2 Replacing the Video PCB

1. Reconnect the cap on the CRT socket, solder the FOCUS wire and screen wire.
2. Solder the CN103, CN104 on Video PCB.
3. Reconnect wires between Video PCB and CRT ground.
4. Reconnect CRT socket and CRT pins to apply silicon bond at Plug/ Socket junction.
5. Solder the five tabs on the underside of the Video Shield.

5-2-4 Cabinet Reassembly

1. If not already done, re-install the CRT following the directions given in "5-2-1 Replacing the CRT."
2. If not already done, re-install the Main PCB following the directions given in "5-2-2 Replacing the Main PCB."
3. If not already done, re-install the Video PCB following the directions given in "5-2-3 Replacing the Video PCB."
4. Position the Rear Cover making sure the tabs along the front edge are properly snapped in place. Replace the four screws.
5. Set the monitor on its Base and make sure that the CRT faceplate was not scratched or otherwise damaged.

6 Alignments and Adjustments

This section of the service manual explains how to control the raster size, position, pincushion, and make convergency and color adjustments.

Caution: The degaussing coil must be connected at CN601 and CN602 on the main PCA before servicing or operation of the monitor. Failure to do so may burn out the Resitor at R602.

6-1 Adjustment Conditions

Direction

When servicing, always face the monitor toward the East and, whenever possible, use magnetic field isolation such as a helmholtz field around the monitor.

Caution: Other electrical equipment may cause external magnetic fields.

During servicing, use an external degaussing coil to limit magnetic build up. If an external degaussing coil is not available, use the internal degaussing circuit, but not more than once per minute.

After finishing all adjustments, test the monitor in all directions. If, for example, the monitor does not meet adjustment specifications when facing in a northerly direction, face the monitor eastward again and readjust the monitor to the smallest error possible within a reasonable time limit. Test the unit again in all directions. If the monitor again fails to meet specifications in a non-easterly direction, contact your region's main service center for possible CRT replacement.

Testing and Burn-in Mode

For testing and burn-in, remove the signal cable from the monitor. Power on the monitor and warm it up. Use the burn-in mode to age the monitor.

6-2 Prepare Main PCB for Adjustment

+B 166V Line Adjustment

No beam, Contrast: Minimum, Brightness: Minimum.

Adjust VR601 to DC $166 \mathrm{~V} \pm 1 \mathrm{~V}$ at T 402 heat sink and GND.

Power Supply Voltage

AC 90-264 Volt $(60 / 50 \mathrm{~Hz} \pm 3 \mathrm{~Hz})$.

High Voltage Control

Adjust VR407 to $24.5 \mathrm{kV} \pm 0.5 \mathrm{kV}$.

Warm-Up Time

The display must be on for 30 minutes before starting alignment. Warm-up time is especially critical in color temperature and white balance adjustments.

Signal

Video analog 0.714 Vp-p positive at 75 ohm terminated.
Sync: Separate
(TTL level negative/positive).

Scanning Frequency

Horizontal/Vertical
$31.47 \mathrm{kHz} / 70 \mathrm{~Hz}, 31.47 \mathrm{kHz} / 60 \mathrm{~Hz}$,
$35.52 \mathrm{kHz} / 87 \mathrm{~Hz}, 37.86 \mathrm{kHz} / 72.8 \mathrm{~Hz}$,
$35.16 \mathrm{kHz} / 56 \mathrm{~Hz}, 37.88 \mathrm{kHz} / 60.3 \mathrm{~Hz}$,
$37.50 \mathrm{kHz} / 75 \mathrm{~Hz}, 46.88 \mathrm{kHz} / 75 \mathrm{~Hz}$,
$48.36 \mathrm{kHz} / 60.00 \mathrm{~Hz}$

High Voltage Adjustment

No beam, Contrast: Minimum, Brightness: Minimum
Adjust VR407 to $24.5 \mathrm{kV} \pm 0.5 \mathrm{kV}$.

Center Raster

Adjust VR403 (H-hold) for the horizontal frequency equal to $3 \hat{1} .5 \pm 0.2 \mathrm{kHz}$.

6-3 Display Control Adjustments

Unless otherwise specified, adjust the EXT-VR:
Contrast : Max. (Fully clockwise)
Brightness: Max. (Fully clockwise)

6-3-1 Centering

Centering means to position the center point of the display in the middle of the display area. Horizontal size and position and vertical size and position control the centering of the display. Adjust the horizontal size and vertical size to their optimal settings: $255 \mathrm{~mm}(\mathrm{H}) \times 191 \mathrm{~mm}(\mathrm{~V})$ Adjust the horizontal position and vertical position to 41.0 mm of the center point of the screen.
$1 \mathrm{~A}-\mathrm{B} \mid \leq 4.0 \mathrm{~mm}$.
$1 \mathrm{C}-\mathrm{DI} \leq 4.0 \mathrm{~mm}$.

Figure 6-1. Centering
6-3-2 Horizontal Size Adjustment
Conditions
Scanning frequency: $48.3 \mathrm{kHz} / 60 \mathrm{~Hz}(1024 \times 768)$
Display image:
Brightness:
Contrast: Crosshatch pattern Maximum Maximum
A djust VR404 (H-size) to $255 \pm 5 \mathrm{~mm}$.

6-3-3 Vertical Size Adjustment

Conditions
Scanning frequency: $48.3 \mathrm{kHz} / 60 \mathrm{~Hz}(1024 \times 768)$
Display image:
Brightness:
Crosshatch pattern
Contrast: Maximum
Adjust VR401 (V-size) to $191 \pm 5 \mathrm{~mm}$.

6-3-4 Horizontal/Vertical Position Adjustment

Conditions

Scanning frequency: $48.3 \mathrm{kHz} / 60 \mathrm{~Hz}(1024 \times 768)$
Display image: Crosshatch pattern
Adjust VR405 (H-shift) and VR301 (V-shift) to center the screen position.

Note : VR405 (H-shift), VR301 (V-shift), VR404 (Hsize), VR401 (V-size), VR402 (Side-pin) are external controls. They are located along the lower edge of the front bezel.

6-3-5 Side Pincushion Adjustment

Conditions

Scanning frequency: $48.3 \mathrm{kHz} / 60 \mathrm{~Hz}$ (1024×768)
Display image: Crosshatch patternAdjust
VR402 (S-pin) to compensate for
East/ West distortion.
$1 C 11,1 C 21 \leq 2 \mathrm{~mm}$
$1011,1021 \leq 2 \mathrm{~mm}$

Figure 6-2. Pincushion

6-3-6 CRT Tilt Adjustment

Mechanical Adjustment:
Reassemble the CRT with fastening screws so that the measurements A and B are equal and the C and D measurements are equal.
If you are unable to correct the tilt, contact the regional service center for CRT replacement.

Figure 6-3. CRT Tilt Adjustment

6-4 Luminance Uniformity

Luminance uniformity means that the luminance at the position of the lowest brightness must be more than 70% of the luminance at the area with the highest brightness. Luminance is considered uniform only if the ratio of lowest to highest brightness is not less than 7:10.

Table 6-1. Computing Luminance Uniformity

Value	70% (Min) Variation $=\frac{C}{A} \times 100$
Conditions	Display Image $:$ White flat field. Luminance $:$ Brightness cut off, Contrast max. A: Luminance at position of highest brightness. C: Luminance at position of lowest brightness.

6-5 White Balance Adjustment

Conditions

Measurement instrument: Color analyzer
Scanning frequency: $\quad 48.3 \mathrm{kHz} / 60 \mathrm{~Hz}$
(1024 x 768)
Display image: $\quad 60 \mathrm{~mm}$ square white pattern
Brightness: VR502, maximum

1. Adjust VR102R (R-BIAS) and VR102B (B-BIAS) so that the back raster color appears white to the unaided eye.
2. Set the brightness control (VR502) to the mechanical center position and the contrast control (VR501) to the maximum position.
3. Change the video signal to the 60 mm square green pattern of the $48.3 \mathrm{kHz} / 60 \mathrm{~Hz}$.
4. Adjust the VR101G (G-GAIN) so that the luminance of the green square is $40 \mathrm{ft}-\mathrm{L} \pm 2 \mathrm{ft}-\mathrm{L}$.
5. Change the video signal to the full white pattern of the $48.3 \mathrm{kHz} / 60 \mathrm{~Hz}$.
6. Adjust the VR101R (R-GAIN) and VR101B (BGAIN) to make the display color white.
($\mathrm{X}=0.283 \pm 0.02, \mathrm{Y}=0.298 \pm 0.02$)

6-6 Focus Adjustment

Conditions

Scanning frequency:
$48.3 \mathrm{kHz} / 60 \mathrm{~Hz}$
(1024 x 768)
Display image:
Brightness:
Contrast:
"H" character pattern
Maximum
Maximum
7. Adjust the contrast control (VR501) so that the luminance is $3 \mathrm{ft}-\mathrm{L}$.
8. Carefully adjust VR102R (R-BIAS) and VR102B (B-BIAS) for the display color to be white.
9. Check the color coordinates at $20 \mathrm{ft}-\mathrm{L}$ luminance.If there is some error, adjust the VR101R

10 Turn the contrast and the brightness controls fully clockwise.

11 Adjust the focus control of the FBT to display the sharpest image possible. (R-GAIN) and VR101B (B-GAIN) display a white color.
12. Recheck the color coordinates at $3 \mathrm{ft}-\mathrm{L}$ luminance and check the white color with rotating the contrast control (VR501). If there is some error, retry the adjustment from (2).
13. Recheck the back raster after disconnecting the signal cable.
Luminance tolerance 3.5ft-L ~15ft-L

6-7 Color Purity Adjustment

Color purity is the absence of undesired color.
Conspicuous mislanding (unexpected color in a uniform field) within the display area shall not be visible at a distance of 50 cm from CRT surface.

Conditions

Direction : Monitor facing east.
Display image : White flat field.
Luminance : Cutoff point at the center of display area.

1. Adjust the focus control of the FBT to display the sharpest image possible.
2. Use locktite to seal the focus control in position.

6-8 Convergence Adjustments

Misconvergence occurs when one or more of the electron beams in a multi beam CRT fail to meet the other beams at a specified point.

Table 6-1. Misconvergence Tolerance

Position	Error in (mm)	CRT Dot Pitch	Model No.
Center (A)	0.3	0.28	SC-428PT/PTL
Corner (B)	0.4	0.28	SC-428PT/PTL

Figure 6-4. Convergence Measurement Areas

Samsung SDD CRT		
1: Setup Bolt	2: Bow Magnet	3: Band
4. Z-Pole Magnet	5. Spacer	6: 4-Pole Magnet
7: Spacer	8: 6 -Pole Magnet	9 Holder
10: Band	11: Tabs	

Figure 6-5. Magnet Configuration

Red and Blue and Green Alignment (6-pole magnet movement)

0-Magnetic
 Field

Motion (1)

Motion (2)

Figure 6-6. Magnet Movements

6-8-I Static (Center) Convergence

Static convergence involves the alignment of the red, blue and green lines in the center area of the display.
See "Dynamic Convergence" for alignment of the color fields around the edges of the display.

Conditions
Direction : Monitor facing east
Warm-up : 30 minutes
Display image : Crosshatch pattern
Tolerances : See Table 6-1
As shown in Figure 6-5, CRTs used in these monitors all have the same magnet configuration as shown in table 6 - 2 below.

Table 6-2. Magnet Configurations

MaCRRT: Manufacturer	Front	of	CRT
1 Samsung $(S D D)$			
1 CRTS.			
six-pole			

Use the following steps to correct any static misconvergence:

1. Locate the pair of four-pole magnet rings.
2. Unlock the rings and rotate the individual rings (change the spacing between tabs) to converge the vertical red and blue lines.
3. Rotate the pair of rings (maintaining the spacing between tabs) to converge the horizontal red and blue lines.
4. After completing the red and blue center convergence adjustment, locate the pair of 6 pole magnet rings.
5. Rotate the individual rings (change the spacing between tabs) to converge the vertical red and blue (magenta) and green lines.
6. Rotate the pair of rings (maintaining the spacing between tabs) to converge the horizontal red and blue (magenta) and green lines. Don't rotate the 2-pole magnet because it is for purity adjustments.
7. Mark the correct position for the magnets and apply a small line of glue to hold the magnets in place. Lock the rings in place.

6-8-2 Dynamic (Edge) Convergence

Use the following procedure to correct minor .dynamic (edge) misconvergence. If, after using this procedure, dynamic misconvergence is still greater than the 0.4 mm tolerance around the periphery of the display area, replace the CRT.

1. Make sure the display is not affected by external magnetic fields.
2. Make sure the static convergence is properly adjusted.
3. Strategically place small magnetic strips on the back of the CRT to correct the misconvergence. Be careful not to remove the paper protecting the adhesive on the magnetic strip until you are satisfied with their placement and the dynamic convergence.
4. When you are satisfied with the convergence around the edge of the CRT, permanently glue the magnets to the back of the CRT.

Warning Do not remove the factory installed wedges. These wedges were installed by the CRT manufacturer and are properly placed for this CRT. Removal may result in damage to the CRT.

6-8-3 Bow Convergence Adjustment

Conditions

Direction: Monitor facing east.
Display Image: Crosshatch pattern mixed with RGB colors.

Bow convergence adjustments are not available for any of the CRTs used in the SC-428PT/PTL monitors. While all the CRTs have bow convergence magnets, they are sealed in the CRT factory and are not user or service technician adjustable. Do not touch these magnets (see Figure 6-5). If color convergence bow adjustment is out of alignment, replace the CRT.
Bow misconvergence should not exceed the values listed in Table 6-1: Misconvergence Tolerances.

6-8-4 Balance Convergence Adjustments

Balance Convergence involves the alignment of the red and blue lines when they are misaligned at one end more so than at the other (X). The deflection yoke holds the balance coils which can correct balance misconvergences.

Figure 6-7. Deflection Yoke Caps

6-8-4 (a) Horizontal Line Red and Blue Balance Convergence

Figure 6-8. Horizontal Line Balance Misconvergence
Use a \#0 hexdriver at the Horizontal Balance Coil $\left(X_{v}\right)$. Turning the VR to the right raises the right end of the blue line and lowers the left end.
Turning the VR to the left lowers the right end of the blue line and raises the left end.

6-8-4 (b) Vertical Red and Blue Balance Convergence

Figure 6-9. Vertical Line Balance Misconvergence
Use a \#0 phillips screwdriver at the Y_{H} variable resistor. Turning the VR to the left tilts the blue line to the right. Turning it to the right tilts the blue line to the left.

Figure 6-10. Upper and Lower Balance Misconvergence
Use a \#0 phillips screwdriver at the Yv variable resistor. Turning the VR to the left moves the blue line at the top upward and at the bottom, the line moves downward. Turning it to the right moves the blue line at the top downward and at the bottom, the line moves upward.

7 Troubleshooting

Notes: 1. If picture does not appear, fully rotate the brightness and contrast controls clockwise before inspection.
2. Check the following circuits:

- No raster appears: Power circuit, horizontal output circuit, H / N control circuit and H / N output circuit.
- High voltage develops but no raster appears: Video output circuits.
- High voltage does not develop: Horizontal output circuits.

10 Check flyback pulse at the collector of 0403 . if not correct, replace 0403. 0206 and T402 or check their related circuits.

No specific color appears

NOTE : If color purity is not normal, manually degauss the monitor using an external degaussing coil before inspection.

Δ Caution

- Soecialty part for this monitor only

No.	Description	Code No.	Specification	QTY	Memark
1	COVER/FRONT-ASSY	02-121-02583	SC-428PS/PT	1	-
	COVER/FRONT-ASSY	02-121-02731	SC-428PSL/PTL	1	
1.A	cover-front	32-111.03669	ABS VO IV21, SC-428PS/PT	1	-
	COVER-FRONT	32.111-03817	ABS VO IV21. SC-428PSL/PTL	1	-
1-8	POWER SPRING	31-121.00259	SUS-304WPA, SC-488PS(1)/PTIL	1	
1-C	kNOB-POWER	32-611-06342	ABS VO IV21, SC-428PS(L//PT(L)	1	-
1-0	LENS LED	32-611-06327	ACRYL CLEAR, SC-428PS(LI/PT(L)	1	-
2	SHIELDJF-ASSY	02-121.02743	SC-428PSLPTL	1	-
3	SCREW ASSY CRT	02-111-00999	B. $3 \mathrm{H},+\mathrm{MS}, \mathrm{L} 30, \mathrm{ZPC} 3, \mathrm{SWRCH18A}$	4	
4	SHEET-CRT.PCB	31-129-00764	SPTE , $T=0.5$	1	-
5	B/CHASSIS-ASSY	02-111-00978	SC-428PS(LI/PTILL	1	-
5-A	BRKT-BOTTOM	31-211-02651	SECC-T.T $\mathrm{T}=1.0$	1	-
5-8	SPRING PLATE	31-121-00247	SUS304-CSP 1/2H.T=0.2	1	-
6	KNOB-function	32-611-06262	ABS VO IV21	7	-
7	BRKT/G-PCB (L)	32-611-07232	ABS VO IV21	1	-
8	h/SINK-DIOOE	31-114-00167	BS+TIN COATING, $\mathrm{T}=1.0$	i	-
9	H/SINK-FBT	31-114-00895	A 1050 P HI4, $\mathrm{T}=1.0$	1	
10	H/MAIN-PCB	31-129-00713	SPTE TO 3	1	
11	SCREN-TAPtITE	33-474-00048		4	
12	COVER-REAR	32-111-03684	ABS VO V21	1	-
13	SCREN-TAPTITE	33-474-00024	8.BH + +M3.L10.ZPC3, SWRCH18A	5	
14	label-rating		SNA	1	-
15	H/Sink-IC (317)	31-114-00618	A6063S ExTA, $T=2.0$	1	-
15	H/SINK-TR (408)	31-111-00143	SPC-1. $T=1.0$	2	
17	H/SINK.POWER	31-114-00883	A5052P. $T=2.0$	1	-
18	SPRING-TR	3i-121-00235	SUS-304 $1 / 2 \mathrm{H}, \mathrm{T}=0.5$	3	
19	H/SINK-IC (4866)	31-114-00999	A1C5OP H $14 \mathrm{~T} T=3.0$	1	-
20	BRKT/G-PCB [8)	32-611.07229	ABS VO V21	1	-
21	STAND-ASSY	02-121-02571	SC-428PSTLI/PTTL	t	-
21-A	STAND-TOP	32-611-06247	ABS VO IV21	1	\bigcirc
21.8	STAND-BASE	32-611-06259	ABS VO IV21	1	-
21-C	RUBBER-FCOT	39-111-00286	NEOPRENE VO GRAY	4	
22	PCB-MOUNT	35-111-06621	NYLON 66	2	-
23	H/SINK-IC (102)	31-114-00924	A6063S EXTR, $\mathrm{T}=2.0$	1	
24	HOLOER-LED	32-611-06381	ABS VO IV21	1	

No.	Description	Code No.	Specification	Q'TY	Remark
1	COVER/FRONT.ASSY	02-121-02583	SC-428PS/PT	1	-
	COVER/FRONT-ASSY	02-121-02731	SC-428PSL/PTL	1	
1-A	COVER-FRONT	32-111-03669	ABS VO IV21, SC-428PS/PT	1	\bigcirc
	COVER-FRONT	32-111-03817	ABS VO IV21, SC-428PSL/PTL	1	-
$1 \cdot 8$	POWER SPRING	31-121-00259	SUS-304WPA, SC-428PS(L)/PT(L)	1	
1-C	KNOB-POWER	32-611-06342	ABS VO IV21. SC-428PS(L)/PT(L)	1	-
1-D	LENS-LED	32-611-06327	ACRYL CLEAR, SC-428PS(L)/PT (L)	1	-
2	SHIELD/F-ASSY	02-121-02743	SC-428PSL/PTL	1	\bigcirc
3	SCREW ASSY CRT	02-111-00999	B, BH, +M5, L30, ZPC3,SWRCH18A	4	
4	SHIELD-CAT,PCB	31-129-00764	SPTE , $T=0.5$	1	
5	B/CHASSIS-ASSY	02-111-00978	SC-428PS(L)/PT(L)	1	
5-A	BRKT-BOTTOM	31-211-0265i	SECC-1, $T=1.0$	1	
5-B	SPRING-PLATE	31-121-00247	SUS304-CSP $1 / 2 \mathrm{H}, \mathrm{T}=0.2$	1	-
6	KNOB-FUNCTION	32-611-06262	ABS VO IV21	7	
7	BRKT/G-PCB (L)	32-611-07232	ABS VO IV21	1	
8	H/SINK-DIOOE	31-114-00167	BS + TIN COATING, $T=1.0$	1	
9	H/SINK-FBT	31-114-00895	A1050P H14, $T=1.0$	1	
10	H/MAIN-PCB	31-129-00713	SPTE TO 3	1	
11	SCREW-TAPTITE	33-474-00048	8,BH,+M3,L10,ZPC3,SWRCH18A,W/W	4	
12	COVER-REAR	32-111-03684	ABS VO V 21	1	\bigcirc
13	SCREW-TAPTITE	33-474-00024	B, BH, +M3, L10, 2 PC3, SWRCH 18 A	5	
14	LABEL-RATING		SNA	1	0
15	H/SINK-IC (317)	31-114-00618	A6063S EXTR, T=2.0	1	-
16	H/SINK-TR (408)	31-111-00143	SPC-1, $T=1.0$	2	
17	H/SINK-POWER	31-114-00883	A5052P, $T=2,0$	1	
18	SPRING-TR	31-121-00235	SUS-304 1/2H , T=0.5	3	
19	H/SINK-IC (4866)	31-114-00999	A1050P HI4 T=3.0	1	-
20	BRKT/G-PCB (R)	32-611-07229	ABS VO IV21	1	-
21	STAND-ASSY	02-121-02571	SC-428PS(L)/PT(L)	1	\bigcirc
21-A	STAND-TOP	32-611-06247	ABS VO IV21	1	
21-B	STAND-BASE	32-611-06259	ABS VO IV21	1	
21-C	RUBBER-FOOT	39-111-00286	NEOPRENE VO GRAY	4	
22	PCB-MOUNT	35-111-06621	NYLON 66	2	
23	H/SINK-IC (102)	31-114-00924	A6063S EXTR, $T=2.0$	1	
24	HOLDER-LED	32-611-06381	ABS VO IV21	1	
					$\therefore=$

9 Servicing Diagrams

9-1 Block Diagram

(DEFLECTION)

9-3 PCB Layout and Electrical Parts List

9-3-1 PCB Layout

Main and CRT Socket, Top View

Main and CRT Socket, Bottom View

CAPACITORS

Cl00	0.1UF,-20/80\%,50V,-20/85	1237101045	
C101R	10uF 20\%, 50V.RT	1119501068	
C101G	10uF 20\%, 50V.RT	111950106 B	
C1018	10uF 20\%,50V.RT	1119501068	
C102B	4.7uF 20%,50V.RT	1119504758	
C102G	4.7UF 20\%,50V.RT	1119504758	
C102R	4.7UF 20%,50V.RT	1119504758	
C103B	33PF, 20\%,50V-25/85	1218203303	
C103G	33PF, 20%, 50V-25/85	1218203303	
C103R	33PF,20\%,50V-25/85	1218203303	
C104B	$1 \mathrm{UF} 2 \Omega \%$, 1 GDV , RT	1119701057	
C104G	1uF $20 \%, 160 \mathrm{~V}, \mathrm{RT}$	1119701057	
C104R	1uF $20 \%, 160 \mathrm{~V}$, RT	1119701057	
C105B	10uF 20\%,50V,RT	111950106 B	
C105G	10uF 20%, 50VRT	119501068	
C105R	10uF 20\%, 50V.RT	111950106 B	
C106B	0.01UF,-20/80\%,500V,	1233501033	
C106G	0.01UF.-20/80\%,500V,	1233501033	
C106R	0.01UF.-20,80\%,500V.	1233501033	
Cl 07	10uF 20\%, 50V, BT	1119501068	
C 08	100uF 20\%, 16V,RT	111920~078	
Cl 09	0.1UF.-20/80\%,50V.-20/85	1237101045	
C 10	100uF 20\%, 16V, RT	1119201078	
Cl 11	100uF 20\%, 16V.RT	111920107B	
C112	100uF 20\%, 16V, RT	1119201078	
C113	0.1UF,-20/80\%,50V,-20/85	1237101045	
C114	0.1UF,-20/80\%,50V,-20/85	1237101045	
C115	47uF 20\%, 100V,RT	1119604761	
C116	0.0才UF.-20/80\%,500V.	1233501033	
C117	2700PF, 10\%,2KV,-25/85'C,RT	1233202728	
C118	0.01UF.-20/80\%,500V.	1233501033	
Cl 19	3.3uF $20 \%, 250 \mathrm{~V}, \mathrm{RT}$	1119803358	
C120	0.1UF,-20/80\%,50V,-20/85	1237101045	
C123	100uF 20\%,16V, RT	111920107B	
C200	100uF 20\%, 16V.RT	111920107B	
3202	0.1UF,-20/80\%,50V,-20/85	1237101045	
2203	10uF 20\%, 50V.RT	1119501068	
C204	0.1UF,-20/80\%,50V,-20/85	1237101045	
C205	100uF 20\%, 16V,RT	1119201078	
C206	0.0022UF, 10%, 100V, RT, CO92MT	1312602226	
C207	33PF, 20\%, 50V-25/85	1218203303	
C208	47PF, 5\%, 50V.-25/85'C.RT	1218204707	
C209	47PF,5\%,50V,-25/85'C,RT	1218204707	
C210	0.1UF,-20/80\%,50V.-20/85	1237101045	
c211	0.1UF.-20/80\%,50V.-20/85	1237101045	
C301	100uF 20%,50V,RT	1119501078	
C305	0.068UF, $10 \%, 100 \mathrm{~V}, \mathrm{RT}$	1312606832	
C310	33PF, 20%, $50 \mathrm{~V}-25 / 85$	1218203303	\triangle
C304	470uF 20\%,25V,RT	1119304773	
C401	1000uF 20\%, 16V.RT	1119201084	
C402	0.22UF, 10\%, 100V,RT	131620224B	
C403	1uF $20 \%, 50 \mathrm{~V}$,RT	1119501058	
C404	0.047UF, 10%, 100V.RT	1312604734	
C405	0.001UF, 10\%, 100V,RT	1312601021	
C406	0.1UF, 10\%, 100V.RT,C092MT	1312601045	

C407	PP, 3300PF, $100 \mathrm{~V}, 2 \%$, RT	1338703327	
C408	0.01UF, 10%, 100V,RT	1312601033	
C409	1UF 20\%,50V.RT	1119501058	
C410	3.3uF 50V, BP	1156203358	
C411	1UF 20\%,50V.RT	1119501058	
C412	PP, 393,250V	1331903936	\triangle
C413	220uF 20\%, 25V,RT	1119302277	
C414	10uF 20\%, 16V.RT	111920106 B	
C415	10uF 20\%, 25V.RT	111930106 B	
C417	0.01 UF,5\%,630V, RB	1331301033	
C418	2500PF. $10 \%, 1.6 \mathrm{KV}, \mathrm{MP}$	1337702529	\triangle
L TYPE	2700PF, 10\%, 1.6KV.MP	1337702728	\triangle
C419	560PF, 10\%,500V,-25/85	1233405612	
C420	0.33uF.5\%, 250V, RT	1336403342	
C421	0.0022UF, 10\%, 100V,RT, C092MT	1312602226	
C422	2800PF, 1.6KV	1337702823	
C423	0.01UF, $5 \%, 630 \mathrm{~V}, \mathrm{RB}$	1331301033	
C424	0.33UF.5\%, 250V.RT	1336403342	
C425	1uF 20%,50V, RT	111950 !05B	
C427	0.0047JF, 10\%, 100V,RT	1312604722	
C428	0.01UF, 10\%, 100V.RT	1312601033	
C429	0.047UF, 10\%, 100V, RT	1312604734	
C430	560PF, 10%, 500V, -25/85	1233405612	
C431	1000PF, 10\%,50V,-25/85	1233101021	
C432	47UF, 20\%, 250V, $-25 / 85{ }^{\text {C }}$, RT	111980476 C	
C433	0.1UF,5\%,250V,RT	1316501045	
C434	100uF $20 \%, 16 \mathrm{~V}$, RT	111920107B	
C435	0.1UF, $5 \%, 250 \mathrm{~V}, \mathrm{RT}$	1316501045	
${ }^{6} 436$	100uF 20\%, 16V,RT	1119201078	
C501	1uF 20\%,50V,RT	1119501058	
C502	0.1UF.5\%.250V.RT	1316501045	
${ }^{\circ} 503$	$0.022 U F, 10 \%, 100 \mathrm{~V}$,RT	1312602238	
C504	0.1UF,5\%,250V.RT	1316501045	
C505	10UF,250V, $20 \%,-25 / 85^{\prime} \mathrm{C}, \mathrm{RT}$	1119801059	
C601	0.47UF $+/-10 \%, 250 \mathrm{VAC},-25 /+85$	$133630474 T$	
C602	2200PF,20\%,400VAC,-25/85	1230702226	$\stackrel{\Delta}{4}$
C603	2200PF, 20\%,400VAC,-25/85	1230702226	\triangle
C604	220UF, 20%, 400V- $-40 / 85, \mathrm{BT}$	1133102277	-
C605	0.1UF,-20/80\%, 50V-20/85	1237101045	
C606	2200PF, 10\%, 500V,-25/85	1233402226	
C607	0.001UF, 10\%, 100V,RT	1312601021	
C608	0.01UF, -20\%/80\%, $1 \mathrm{KV},-25 / 85, \mathrm{~PB}$	1228501033	
C609	10uF 20%,50V, RT	1119501068	
C610	1000PF, 10\%, 50V, -25/85	1233101021	
C611	PP, 3300PF, 100V, 2%,RT	1338703327	
C612	1000PF, $10 \%, 50 \mathrm{~V}$-25/85	1233101021	
C613	560PF, $10 \%, 1 \mathrm{KV},-25 / 85 \mathrm{C}, \mathrm{RT}$	1233305612	
C616	47uF 20\%,100V, RT	119604761	
C617	0.1UF,-20/80\%,50V,-20/85	1237101045	
C618	47UF, $20 \%, 25 \mathrm{~V},-40 / 85^{\prime} \mathrm{C}, \mathrm{RT}$	1119304768	
C619	4700PF, 20%, 400VAC,-25/85	1230704722	\triangle
C620	4700PF, 20%, 400VAC,-25/85	1230704722	\triangle
C626	100uF 20%, 100V, RT	1119601072	
C627	220uF 20\%, 100V.RT	11960227 C	
C628	220PF, 10\%, 1 KV , RT	1233302214	
C629	100uF 20\%,50V,RT	. 1119501078	

1 © ：Caution，
Specialty part for this monitor only，
ESD Caution）
Lnc．No．

Description

Code No．
Remarks

0301
0401
D402
D403
D404
D405
0406
D407
0408
D409
D410
0411
0412
0413
D415
D501
D502
D503
D504
D505
D506
D507
D601
D602
0603
D604
D605
0606
D607
D608
0609
0610
D611
0612
D613
D614
0618
D619
D620
0621
0622
0701
0702
0706
OP201

0．5W，12V，UZ12B
1N4148
0．5W，8．2V．UZ8．2BL
BAV21，0．25A，250V，AT
1N4148
1A，600V， 1 N4937
SUB－ASSY，RU4OS（2211190526）
DIODE ，3A，400V，50NS，UF5404
0．5W．9．1V．UZ9．1B
RGP15J，1．5A，600V，250ns
1N4148
RGP15J，1．5A，600V，250ns
RGP15J，1．5A，600V，250ns
0．5W，5．1V，UZ5．1B
BAV21，0．25A，250V，AT
0．5W，6．2V，UZ6．2B
1N4148
BAV21，0．25A，250V，AT
1N4148
BAV21，0．25A，250V，AT
1A，600V，1N4937
1A，600V，1N4937
1N5399GP，1．5A，1000V，AT
1N5399GP，1．5A，1000V，AT
1N5399GP，1．5A，1000V，AT
1N5399GP，1．5A，1000V，AT
1N4148
$0.5 \mathrm{~W}, 12 \mathrm{~V}, \mathrm{UZ} 12 \mathrm{~B}$
RGP02－12E，0．5A，1200V，300NS
RGP02－12E，0．5A，1200V，300NS
$0.5 \mathrm{~W}, 16 \mathrm{~V}, \mathrm{UZ} 16 \mathrm{~B}$
1A1000V，1N4007
$0.5 \mathrm{~W} 5.1 \mathrm{VUZ5.1B}$
1N4148
$0.5 \mathrm{~W}, 16 \mathrm{~V}, \mathrm{UZ} 16 \mathrm{~B}$
UF4007，1A，1000V，75NS，AT
UR1M5704
UF5408
1．5A，400V，RGP15G／FF1504
DIODE ，3A，400V，50NS，UF5404
DIODE ，3A，400V，50NS，UF5404
0．5W5．1VUZ5．1B
0．5W5．1VUZ5．1B
0．5W5．1VUZ5．1B
LED，GREEN／RED，SPR－39MVW3

2212100116
2213290048
221210008 B
2211290167
2213290048
2211190087
0116101574
2211190458
2212100099
2211190461
2213290048
2211190461
2211190461
2212100051
2211290167
2212100075
2213290048
2211290167
2213290048
2211290167
2211190087
2211190087
2211290179
2211290179
2211290179
2211290179
2213290048
2212100116
2211190502
2211190502
2212100143
2211290063
2212100051
2213290048
2212100143
2211190485
2211190752
2211190497
2211190167
2211190458
2211190458
2212100051
2212100051
2212100051
2215300012

ICS

｜C101	1203，RGB VIDEO AMP， 28	2332190208	会
｜C102	SUB－ASSY，LM2406T（2332990128）	0116102134	会
IC201	SL606，ASIC，DIP－20	2351200036	\triangle
1C202	78M05，0．5A，5V	2331400012	
IC301	SUB－ASSY，TDA8351（2332190339）	0116102214	䢒
IC401	TDA4850，HV DEFLECTION	2332190354	
1C402	IC HYBRIDE，SIP	2351100116	
IC601	KA3882，PWM CONTROLLER	2332100485	会
IC602	431C	－ 2331300012	

Loc. No.
Description
SUB-ASSY, KA317(2321290116) 24LC21 I/P
IC OPTO-COUP'COY8ONG,ISOLA'

Code No.
0116101443
2341790063
2330190063

$\begin{aligned} & \text { IC603 } \\ & \text { IC701 } \\ & \text { OP601 } \end{aligned}$	$\begin{aligned} & \text { SUB-ASSY,KA } 317(2321290116) \\ & 24 L C 21 \text { I/P } \\ & \text { IC OPTO-COUP'COY8ONG,ISOLA. } \end{aligned}$	$\begin{aligned} & 0116101443 \\ & 2341790063 \\ & 2330190063 \end{aligned}$	3
COILS			
$\lfloor 101$ L102 L103 L101B L101G L1018 L102B L102G L. 102 R 1.401 L402 $\llcorner 403$ $\llcorner 404$ 1601 L602 L603 L606 LF601	FILTER,CORE, 130 OHM, 3.5*8.0 FILTER,CORE,2.4UH,5.5MM.BEA COIL,INDUCTOR, 100UH,RT COIL. $0.82 \mathrm{UH},+25 \%$ COLL. $0.82 \mathrm{UH},+25 \%$ COIL, $0.82 \mathrm{UH},+25 \%$ FILTER,CORE,2.4UH,5.5MM,BEA FILTER,CORE,2.4UH,5.5MM,BEA FILTER,CORE,2.4UH,5.5MM,BEA COIL,H-LIN,FIX,12UH,25\%,TUBE COIL,MODU',LITZ,200UH,10\% COIL,CHOKE,3.2MH,15\% 8.2MH,10\% FILTER,CORE,2.4UH,5.5MM,BEA FLITER,CORE, 2.4UH,5.5MM,BEA FILTER,CORE, 130 OHM, $3.5 * 8.0$ FILTER,CORE, $2.4 \mathrm{UH}, 5.5 \mathrm{MM}, 8 \mathrm{BEA}$ FLITER, 11 MH MIN	1731300128 1731300063 1722300179 1722100087 1722100087 1722100087 1731300063 1731300063 1731300063 1722600485 1721100247 1722200434 1722100179 1731300063 1731300063 1731300128 1731300063 1731100407	

TRANSISTORS

0201	KSC945CY, 150MA,60V,250MV	2111400012	-
0203	KSC945CY, 150MA, 60V,250MV	2111400012	
0204	KSC945CY, 150MA, $60 \mathrm{~V}, 250 \mathrm{MV}$	2111400012	-
0205	VN2222LL,0.23A	2113190211	
0206	KSC945CY, 150MA, $60 \mathrm{~V}, 250 \mathrm{MV}$	2111400012	0
0207	KSC945CY, 150MA, $60 \mathrm{~V}, 250 \mathrm{MV}$	2111400012	-
0208	KSC945CY, 150MA, 60V,250MV	2111400012	
0209	KSC945CY, 150MA,60V,250MV	2111400012	
0401	KSA733CY	2112400024	-
0402	KSC945CY, 150MA,60V,250MV	2111400012	-
0403	ASS'Y BU2508/KSE800(2111790378)	0116102345	
0404	KSC1008Y	2111400036	
Q405	KSA733CY	2112400024	-
0406	KSE800,4A,60V.40W	2111500131	-
0407	KSA733CY	2112400024	-
0408	H/S ASS'Y IRF9610(2113200012)	0116102158	
0409	KSC945CY, 150MA,60V,250MV	2111400012	
0410	KSA733CY	2112400024	-
0411	KSA733CY	2112400024	\bigcirc
0412	FET,N-CHANNEL,2SK1351,5A,	2113190182	-
0413	FET,N-CHANNEL, IRF630	2113100298	
0414	KSA733CY	2112400024	-
0415	KSC945CY, 150MA, 60V, 250 MV	2111400012	
0501	KSA733CY	2112400024	-
0502	KSC945CY, 150MA, 60V,250MV	2111400012	-
0601	KSC945CY, 150MA,60V,250MV	2111400012	-
0602	H/S ASS'Y STH6NA80FI(2113190274)	0116102122	
0603	SUB-ASSY,2SC3503(2111500118)	0116102226	
0607	KSC945CY, 150MA, 60V, 250 MV	2111400012	-

: Caution, Specialty part for this monitor only. ESD Caution)

Loc. No.

RESISTORS

R1008	22K OHM, 1/6W, 5\%	1412102238	
R100G	22K OHM, 1/6W, 5%	1412102238	
R100R	22K OHM, 1/6W, 5%	1412102238	
R1018	47 OHM, 1/6W. 5%	1412104707	
R101G	47 OHM, 1/6W, 5%	1412104707	
R101R	47 OHM, 1/6W. 5%	1412104707	
R1028	75 OHM, 1/6W.5\%	1412107508	
R102G	75 OHM, 1/6W. 5%	1412107508	
R102R	75 OHM, 1/6W. 5%	1412107508	
R1038	10K OHM, 1/6W, 5%	1412101033	
R103G	10K OHM, 1/6W, 5%	1412101033	
R103R	10K OHM, 1/6W, 5%	1412101033	
R104B	200 OHM, 1/6W. 5%	1412102015	
R104G	200 OHM, 1/6W, 5%	1412102015	
R104R	200 OHM, 1/6W, 5%	1412102015	
R1058	390 OHM,1/6W, 5%	1412103912	
R105G	390 OHM, 1/6W, 5%	1412103912	
R105R	390 OHM, 1/6W. 5%	1412103912	
R106B	47 OHM, 1/4W. 5%	1413404707	
R106G	47 OHM, 1/4W. 5%	1413404707	
R106R	47 OHM, 1/4W. 5%	1413404707	
R107B	150 OHM, 1/6W, 5%	1413401511	
R107G	150 OHM, 1/6W, 5%	1413401511	
R107R	150 OHM.1/6W. 5%	1413401511	
R1088	470K OHM, 1/4W, 5%	1413404746	
R108G	470K OHM, 1/4W, 5%	1413404746	
8108R	470K OHM, 1/4W, 5%	1413404746	
R1098	100 OHM.1/4W. 5%	1413401018	
R109G	100 OHM, 1/4W. 5%	1413401018	
R109R	100 OHM.1/4W. 5%	1413401018	
R110	1K OHM, 1/6W, 5%	1412101021	
R111	5.6K OHM, 1/4W, 5%	1413405624	
R112	82K OHM, 1/6W, 5%	1412108238	
R113	11K OHM, 1/6W, 5%	1412101137	
R114	100 OHM.1/4W. 5%	1413401018	
R115	2.2M OHM $1 / 1 / 6 \mathrm{~W} .5 \%$	1412102253	
R200	4.7K OHM, 1/4W, 5%	1413404722	
R201	220 OHM, 1/4W, 5%	1413402214	
R202	220 OHM, 1/4W, 5\%	1413402214	
R203	10K OHM, 1/6W.5\%	1412101033	
R204	100 OHM, 1/6W. 5%	1412101018	
R205	2.7K OHM, 1/6W, 5%	1412102728	
R206	4.7K OHM, 1/6W. 5%	1412104722	
R207	1K OHM, 1/6W, 5%	1412101021	
R208	3.9K OHM, 1/6W. 5%	1412103924	
R209	1.8K OHM, 1/6W. 5%	1412101826	
R210	4.7K OHM, 1/4W, 5\%	1413404722	
R211	10K OHM, 1/4W, 5%	1413401033	
R212	10K OHM, 1/6W. 5%	1412101033	
R213	82K OHM, 1/6W, 5%	1412108238	
R214	1K OHM, 1/4W. 5%	1413401021	
R215	22K OHM, 1/6W. 5%	1412102238	
R216	42K OHM, 1/6W, 5%	1412104232	-
R217	1.8M OHM, 1/6W, 5%	1412101853	

R218
R219
R220
R221
R222
R223
R224
R225
R226
R227
R228
R301
R302
PTL
R303
R304
R305
R306
R307
R308
R309
R310
R311
R312
R314
8401
R402
$R 403$
R404
R405
R406
R407
R408
R409
R410
R411
8412
R413
R414
R415
R416
R417
8418
R419
R420
R421
R422
R423
R424
R425
R426
R427
R429
R430
R431
R432

680K OHM, 1/6W,5\% 470K OHM $1 / 1 / 6 \mathrm{~W}, 5 \%$ 1.8K OHM, 1/6W,5\% 3.3K OHM, 1/6W. 5% 2.2K OHM.1/6W. 5% 1K OHM, $1 / 4 \mathrm{~W}, 5 \%$ 10K OHM, 1/6W. 5% 22K OHM,1/6W,5\%
2.2K OHM, 1/6W, 5% 220 OHM, 1/6W. 5% 100 OHM, 1/6W, 5% 100 OHM, 1/2W, 5% 100K OHM, 1/6W.5\% 100K OHM, 1/6W,5\% 180 OHM, 1/2W.5\% 1.0 OHM, 1W, 5%, FORMING 1K OHM, $1 / 4 \mathrm{~W}, 5 \%$
1.5K OHM, 1/6W, 5%
1.0 OHM, 1W. 5%,FORMING 220 OHM, $1 / 4 \mathrm{~W}, 5 \%$ 1.5K OHM, 1/6W, 5%
1.5K OHM, $1 / 6 \mathrm{~W} .5 \%$
1.2K OHM, 1/4W.5\%

150K 0HM, 1/6W, 5% 3.3K OHM, $1 / 6 \mathrm{~W}, 5 \%$ 33 OHM, $1 / 2 \mathrm{~W}, 5 \%$ 180K OHM, 1/6W,5\% 470K OHM, 1/6W, 5% 100K OHM, 1/6W. 5% 150K OHM, $1 / 6 \mathrm{~W}, 5 \%$ 220K OHM. $1 / 6 \mathrm{~W} .5 \%$ 100K OHM,1/4W,5\% 100K OHM. $1 / 6 \mathrm{~W} .5 \%$ 22K OHM,1/6W,5\% 10K OHM, 1/6W. 5% 7.5K OHM,1/6W.5\% 100K OHM, 1/6W. 5% 150K OHM, 1/6W.5\% 1.8K OHM, 1/4W. 5% 100K OHM, 1/6W.5\% 1K OHM, $1 / 4 \mathrm{~W} .5 \%$ 68K OHM, $1 / 4 \mathrm{~W}, 5 \%$ 82K OHM, 1/6W, 5% 2.2K OHM, 1/4W. 5% 1K OHM, $1 / 4 \mathrm{~W}, 5 \%$ 180 OHM. $1 / 4 \mathrm{~W} .5 \%$ 470 OHM,1/6W,5\% 470 OHM, $1 / 6 \mathrm{~W} .5 \%$ 47 OHM, $1 \mathrm{~W}, 5 \%, 63 \mathrm{MM}$ TAPING 1K OHM, 1/6W. 5% 10K OHM.1/6W,5\% 10K OHM,1/6W.5\% 1K OHM, $1 / 6 \mathrm{~W}, 5 \%$ 4.7K OHM, 1/6W. 5% 5.1 K OHM, $1 / 6 \mathrm{~W} .5 \%$ 82 OHM,3W,5\%,63MM

1412106844
1412104746
1412101826
1412103327
1412102226
1413401021
1412101033
1412102238
1412102226
1412102214
1412101018
1414201018
1412101045
1412101045
1414201814
1433201R0B
1413691021
1412101523
1433201ROB
1413402214
1412101523
1412101523
1413401229
1412101547
1412103327
1414203303
1412101841
1412104746
1412101045
1412101547
1412102241
1413401045
1412101045
1412102238
1412101033
1412107523
1412101045
1412101547
1413401826
1412101045
1413401021
1413406832
1412108238
1413402226
1413401021
1413401814
1412104719
1412104719
143360470B
1412101021
1412101033
1412101033
1412101021
1412104722
1412105122
1435508202

Loc. No.	Description	Code No.	Remarks
$R 433$	- 330 OHM, 1/2W, 5%	1414203315	
R434	22 OHM, 1/2W, 5\%	1414202202	
R435	33K OHM, 1/6W, 5%	1412103339	
R436	1 K OHM, 1/6W, 5%	1412101021	
R437	100K OHM, 1/6W, 5%	1412101045	
R438	22K OHM, 1/6W, 5%	1412102238	
R439	47K OHM, 1/4W, 5%	1413404734	
8440	10K OHM, 1/6W, 5%	1412101033	
R441		3618100012	
$R 442$	12K OHM. 1/6W. 5%	1412101232	
R444	10K OHM, 1/6W, 5\%	1412101033	
R454	22 OHM, 1/2W, 5%	1414202202	
R455	5.6K OHM, 1/6W. 5%	1412105624	
R456	560 K OHM, 1/6W, 5%	1412105648	
R457	10K OHM, 1/6W.5\%	1412101033	
R458	39K OHM, 1/6W, 5%	1412103936	
R459	1.8K OHM, 1/6W, 5\%	1412101826	
R460	22K OHM, 1/6W.5\%	1412102238	
R461	4.7 K OHM, 1/6W, 5%	1412104722	
R462	68K OHM, 1/6W. 5%	1412106832	
R463	470 OHM, 1/6W, 5%	1412104719	
R465	10K OHM, 1/6W, 5%	1412101033	
R501	2.7K OHM, 1/4W, 5%	1413402728	
R502	1.5K OHM, 1/4W, 5%	1413401523	
R503	7.5K OHM, 1/6W, 5\%	1412107523	
$R 504$	100 K OHM, 1/2W, 5%	1414201045	
R505	1.5K OHM, 1/4W, 5%	1413401523	
R506	2.2M OHM $1 / 4 \mathrm{~W}, 5 \%$	1413402253	
R507	12K OHM, 1/4W, 5%	1413401232	
R508	1K OHM. $1 / 6 \mathrm{~W}, 5 \%$	1412101021	
R509	100K OHM, 1W, 5%, 63MM TAPING	143360104B	
R510	100 K OHM, 1/2W, 5%	1414201045	
R600	100 OHM, 1W, 5\%,63MM TAPING	143360101 B	
R601	1M OHM, 1/2W, 5%	1414201057	
R602	220 OHM, 1W, 5\%,63MM TAPING	143360221B	
R603	3.3 OHM, $7 \mathrm{~W}, 5 \%$ SHORT	1475703R3B	\triangle
R604	100K OHM, 1/4W, 5%	1413401045	
R605	10K OHM, 1/6W, 5\%	1412101033	
R606	2.7K OHM, 1/6W, 5%	1412102728	
R607	2.2M OHM $1 / 1 / 6 \mathrm{~W}, 5 \%$	1412102253	
R608	390 OHM, 1/6W, 5%	1412103912	
$R 609$	1.5K OHM, 1/4W, 5%	1413401523	
R610	56K OHM, 1/6W, 5%	1412105636	
R611	1K OHM, 1/4W, 5%	1413401021	
R612	10 K OHM, 1W, 5%, AT	1433601033 1413406829	
$R 613$ $R 614$	6.8K OHM, $1 / 4 \mathrm{~W}, 5 \%$ 120 K OHM $1 / 2 \mathrm{~W} 5 \%$	1413406829 1414201244	
$R 614$ $R 615$	120 K OHM, 1/2W,5\% 1.5 K OHM, 1/4W, 5%	1414201244 1413401523	
8616	100 K OHM $, 1 \mathrm{~W}, 5 \%, 63 \mathrm{MM}$ TAPING	143360104B	
R617	100K OHM, 1W, $5 \%, 63 \mathrm{MM}$ TAPING	143360104 B	
R618	68K OHM,3W, $5 \%, 63 \mathrm{MM}$ TAPING	1435506832	
R619	6.8 OHM, 1/4W. 5%	1413406 R82	
R620	1 K OHM, 1/4W, 5%	1413401021	
R621	100 K OHM, 1/4W, 5%	1413401045	
R622	0.27 OHM, 1W, 5%,W/W AT NON	146510 R271	
R623	8.2K OHM, 3W, $5 \%, 63 \mathrm{MM}$ TAPING	1435508226	
R624	8.2K OHM, 3W, $5 \%, 63 \mathrm{MM}$ TAPING	1435508226	
R625	10K OHM, 1/2W, 5%	1414201033	

Loc. No.	Description	Code No.	Remarks
R626 R627 R628 R629 R631 R639 R640 R641 R701 R702 R704 R705 R706	22K OHM, 1/6W. 5% 100K OHM, 1/6W. 5% 390 OHM, 1/6W. 5% 3.3K OHM, 1/2W. 5% 6.8K. OHM, 1/4W. 5% 47 OHM, $1 \mathrm{~W}, 5 \%, 63 \mathrm{MM}$ TAPING 220 OHM. $1 / 4 \mathrm{~W}, 2 \%$ 1.8K OHM, 1/4W.2\% 100 OHM, 1/6W. 5% 100 OHM.1/6W.5\% 100 OHM, $1 / 6 \mathrm{~W}, 5 \%$ 47K OHM,1/6W,5\% 47K OHM, 1/6W, 5%	1412102238 1412101045 1412103912 1414203327 1413406829 1433604708 1413302214 1413301826 1412101018 1412101018 1412101018 1412104734 1412104734	
VARIABLE RESISTORS			
VR101B VR101G VR101R VR102B VR102G VR102R VR301 VR401 VR402 VR403 VR404 VR405 VR406 VR407 VR501 VR502 VR601 VR602	200 OHM,B,O. 1 W VAR NO-HAN 200 OHM,B.0.1W, VAR NO-HAN 200 OHM,B,0.1W, VAR,ND-HAN 50K OHM,B,0.1W,VAR,NO-HAN 50 K OHM, B, O. 1 W , VAR,NO-HAN 50K OHM,B, O.1W, VAR,NO-HAN VAR,HANDLE ARRY 100K OHM*5 VAR, HANDLE ARRY 100K OHM*5, VAR,HANDLE ARAY 100 K OHM*5, 1 K OHM,B.O.1W,VAR,NO-HAN VAR, HANDLE ARRY $100 \mathrm{~K} 0 \mathrm{HM}{ }^{*} 5$, VAR,HANDLE ARRY 100K OHM*5. 200K OHM,B,0.1W,VAR,NO-HAN 1 K OHM,B,O.1W,VAR,NO-HAN VAR,HANDLE ARRY 5K/10K VAR,HANDLE ARRY 5K/10K 500 OHM,B,0.1W,VAR,V-TYPE 50 K OHM,B,0.1W, VAR,NO-HAN	1527190075 1527190075 1527190075 1527190024 1527190024 1527190024 1536300012 1536300012 1536300012 1527190099 1536300012 1536300012 1527190048 1527190099 1536400012 1536400012 1527290036 1527190128	
TRANSFORMER			
$\begin{aligned} & \text { T401 } \\ & T 402 \\ & T 601 \end{aligned}$	10MH/70UH,15\%,SC-431V2 FBT.COLOR,FCO-14A042 TRANS, POWER S $N W$	$\begin{aligned} & 1713200155 \\ & 1712200354 \\ & 1711600696 \end{aligned}$	A
OTHERS			
PTC601 PCB IS601 FG601 FH601 FH602 SW601 SW401 $\times 201$ EY601 EY602 EY603 EY604 EY605 EY606	PTC, 14 OHM, 20\%,220V,3PIN PCB MAIN 247*330,fr-1,1.6t COIL,DEGAUSSING, $115 T+/-1 T$ FILTER,EMI SOCKET,250V,3A FUSE,TIME-LUG,3.15A,250V CLIP,5.20*2OMM,TAPPING CLIP,5.20*20MM,TAPPING PUSH SWITCH.SPST.5A/80A 36V,0.2A,4PIN 8.00 MHZ,2P,RT,HC-49/u EYELET 3.1*2.0*2.8.BSP,SN EYELET $3.1 * 2.0 * 2.8$. BSP.SN EYELET $3.1 * 2.0 * 2.8, B S P$,SN EYELET 3.1*2.0*2.8.BSP,SN EYELET 3. $1 * 2.0 * 2.8, B S P$,SN EYELET 3. $1 * 2.0 * 2.8, B S P, S N$	1562100063 1611101841 1722400262 1731490155 1910490012 1911300087 1911300087 1913100223 1913900012 2911100167 3393100036 3393100036 3393100036 3393100036 3393100036 3393100036	

Note: This monitor has two different Main PCB Assembly types. The appropriate Main PCB Ass'y depends on the CRT and Deflection Yoke type. The Main PCB Assembly design is the same for both types; only a few individual parts are different. Be sure to refer to the list above for the appropriate code number.

9-4 Schematic Diagrams

Caution

1. The areas shaded or marked with \triangle on the schematic diagram and parts list designate components which have special characteristics important for safety. Replace these parts only with parts identical to those in the original circuit or specified in the parts list. Before replacing any of these components carefully read the "Product Safety Notice."
2. When taking measurements, pay special attention to the following:
1) Do not use your instrument between primary ground (symbol $\frac{1}{\nabla}$) and secondary circuit.
2) Do not use your instrument between secondary ground (symbol \nrightarrow) and primary circuit.

Warning

This equipment contains safety critical components. All parts shown with the \square mark on the schematic are safety critical.

Replace safety critical parts with only manufacturers recommended parts. See parts list for exact replacements.

Note

1. Resistance is shown in $\mathrm{OHM} . \mathrm{K}=1000, \mathrm{M}=1,000,000$ and the rated power of resistors not noted in schematic diagram is $1 / 4 \mathrm{~W}$.
2. Capacitance is shown in $\mu \mathrm{F}$. Capacitance not otherwise noted are shown in $\mathrm{pF}(1 \mu \mathrm{~F}=1,000,000 \mathrm{pF})$. Rated voltage of condensers not otherwise noted in schematic diagram is 50 V .
3. Abbreviations and Symbols

MO	R-METAL OXIDE	WW	R-WIRE WOUND
FU	FUSIBLE	C	R-COMPOSITION
CM	R-CEMENT MP METAL POLYPROPYLENE		
MP	C-METAL POLYESTOR	PP	C-POLYPROPYLENE
P	C-POLYESTOR	T	C-TANTALUM
$\boldsymbol{1}$	HOT GROUND	章	COLD GROUND

4. The secondary voltage is read with an SSVM from the indicated point to cold ground ($\boldsymbol{\lambda}$)). The primary voltage is read with an SSVM from the indicated point to hot ground (
5. This schematic diagram is subject to change without notice.

9-4-1 Main and CRT Socket, Schematic Diagram and Waveforms

434.8 V (IC301 \#7)

24 V (C104R,G, B +Term.)

