

ФУНКЦИОНАЛЬНАЯ СХЕМА

(вид сверху)

ПРИМЕНЕНИЕ

- Усилители в трактах РЧ и ПЧ
- СВЧ измерительное оборудование
- Беспроводная и сотовая связь
- Усилители спутникового сигнала

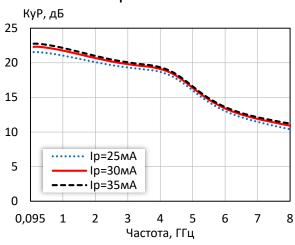
СПЕЦИФИКАЦИЯ

Диапазон рабочих частот	0 – 6	ГГц
Коэффициент усиления	22,0	дБ
Коэффициент шума	2,4	дБ
Линейная выходная мощность	27	мВт
Напряжение питания	+5,0	В
Диапазон рабочих температур	-60 до +85	°C
Тип корпуса	KT-47	
Технологический процесс	GaAs ГБТ	

КРАТКОЕ ОПИСАНИЕ

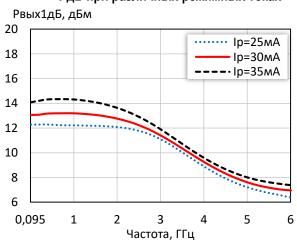
1324УВ7У1 – СВЧ МИС широкополосного усилителя с выходной мощностью до 27 мВт и диапазоном рабочих частот 0 – 6 ГГц, согласованного по входу и выходу с линией, имеющей волновое сопротивление 50 Ом. СВЧ МИС изготавливается в пластмассовом трёхвыводном корпусе КТ-47 размером 4,25х4,6 мм².

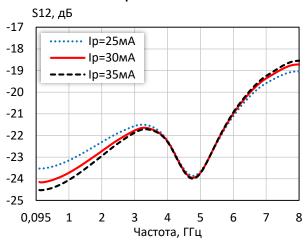
Выходную мощность усилителя можно регулировать в некоторых пределах, изменяя режимный ток (I_p) путем выбора соответствующего резистора в цепи питания коллектора.

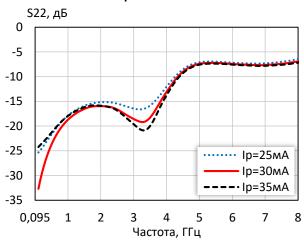

ОСНОВНЫЕ ПАРАМЕТРЫ

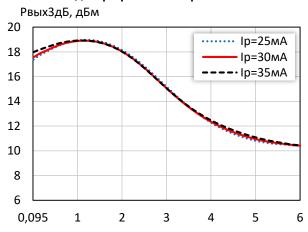
Электрические параметры при I_p = 30 мA, R1 = 15 Ом, T = 25 °C				
Параметр, единица измерения	Условия	мин.	тип.	макс.
Диапазон рабочих частот, ГГц	K _{уР} > 5 дБ	0,1 - 6,1	0,01 – 6,4	
Коэффициент усиления на частоте 100 МГц, дБ	Р _{вх} = 0,01 мВт		22,2	
Коэффициент усиления на частоте 3,0 ГГц, дБ	Р _{вх} = 0,01 мВт	15,0	19,8	20,0
Коэффициент усиления на частоте 6,1 ГГц, дБ	Р _{вх} = 0,01 мВт		13,2	
Неравномерность коэффициента усиления, дБ	f = 0,1–2,0 ГГц		1,4	3,0
Выходная мощность при уровне компрессии коэффициента усиления 1 дБ, мВт	f = 500 МГц, I _p = 35 мА		27,0	32,0
Коэффициент шума, дБ	f = 500 МГц		2,4	2,6


E-mail: info@electron-engine.ru Телефон: +7 (495)761-75-23

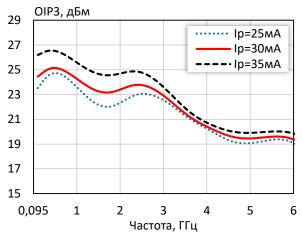

Коэффициент усиления при различных режимных токах


Коэффициент отражения от входа при различных

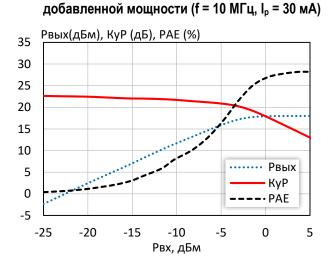

Выходная мощность при уровне компрессии КуР на 1 дБ при различных режимных токах


Коэффициент обратной передачи при различных режимных токах

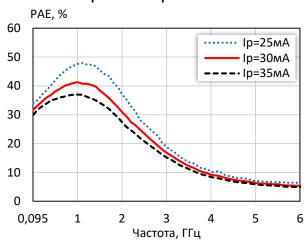
Коэффициент отражения от выхода при различных режимных токах

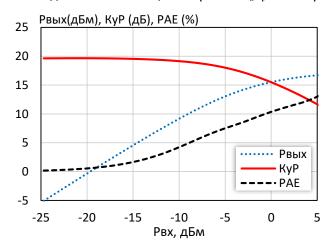


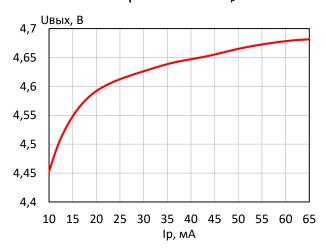
Выходная мощность при уровне компрессии КуР на 3 дБ при различных режимных токах



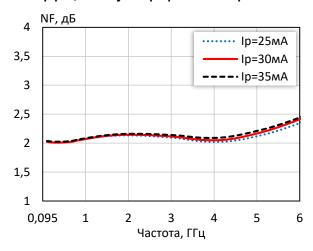

Точка пересечения интермодуляции третьего порядка по выходу при различных режимных токах


Выходная мощность, коэффициент усиления, КПД по

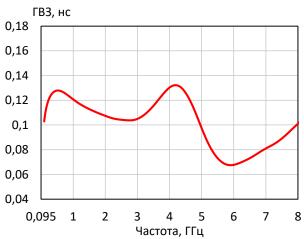

Входное напряжение покоя $U_{\text{вх}}$ при изменении режимного тока I_{p}

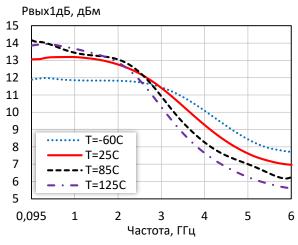

КПД по добавленной мощности в точке $P_{вых3дБ}$ при различных режимных токах

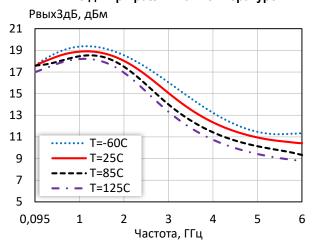
Выходная мощность, коэффициент усиления, КПД по добавленной мощности (f = 3 ГГц, I_p = 30 мA)

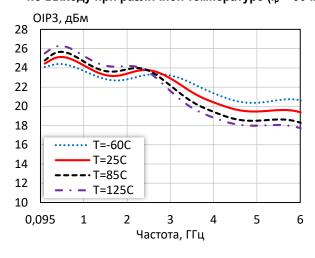


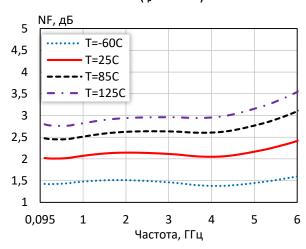
Выходное напряжение покоя U_{вых} при изменении режимного тока I_D



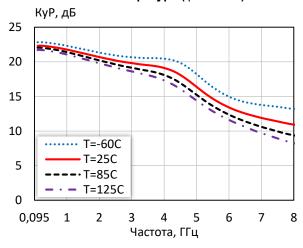

Коэффициент шума при различных режимных токах


Групповая задержка сигнала (I_p = 30 мA)

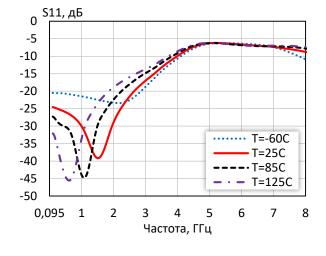

Выходная мощность при уровне компрессии K_{уР} на 1 дБ при различной температуре

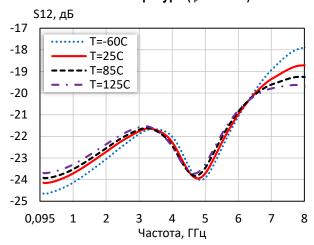

Выходная мощность при уровне компрессии K_{yP} на 3 дБ при различной температуре

Точка пересечения интермодуляции третьего порядка по выходу при различной температуре (I_D = 30 мA)



Коэффициент шума при различной температуре (I_p = 30 мA)




Коэффициент усиления при различной температуре ($I_p = 30 \text{ мA}$)

Коэффициент отражения от входа при различной температуре (I_p = 30 мA)

Коэффициент обратной передачи при различной температуре (I_p = 30 мA)

Коэффициент отражения от выхода при различной температуре ($I_p = 30 \text{ мA}$)

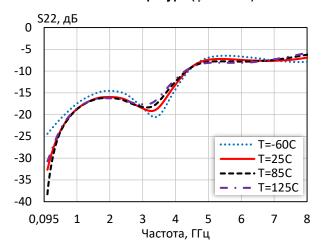


Таблица 1 — S-параметры при I_p = 25 мA, T = 25 °C

Частота,	S11 ,	Arg S11,	S21 ,	Arg S21,	S12 ,	Arg S12,	S22 ,	Arg S22,
ГГц	дБ	град	дБ	град	дБ	град	дБ	град
0,1	0,01	160,62	11,72	172,64	0,07	0,61	0,06	163,01
1,0	0,04	120,82	11,29	135,17	0,07	-1,43	0,13	74,87
2,0	0,08	128,59	10,11	94,79	0,08	-6,73	0,17	34,31
3,0	0,16	123,25	9,27	56,91	0,08	-17,32	0,15	23,30
4,0	0,33	83,21	8,56	14,98	0,08	-32,59	0,25	42,62
5,0	0,51	26,76	6,32	-29,58	0,07	-24,03	0,45	8,60
6,0	0,49	-0,41	4,48	-57,42	0,09	-26,54	0,44	-17,19
7,0	0,44	-13,83	3,74	-84,20	0,10	-41,33	0,43	-32,36
8,0	0,36	-35,22	3,30	-116,34	0,11	-59,27	0,48	-48,30
9,0	0,34	-76,51	2,78	-156,84	0,10	-77,04	0,62	-71,30
10,0	0,46	-114,17	1,77	155,71	0,09	-77,69	0,79	-108,36

Таблица 2 — S-параметры при I_p = 30 мA, T = 25 °C

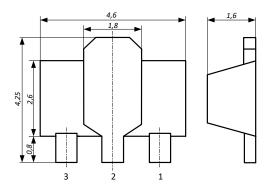
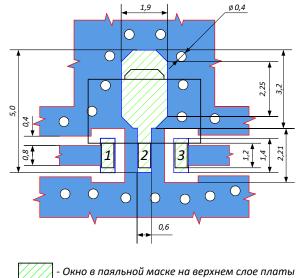

Частота,	S11 ,	Arg S11,	S21 ,	Arg S21,	S12 ,	Arg S12,	S22 ,	Arg S22,
ГГц	дБ	град	дБ	град	дБ	град	дБ	град
0,1	0,06	-3,11	12,76	171,81	0,06	0,41	0,02	19,65
1,0	0,03	-15,50	12,27	134,13	0,07ë	0,07	0,12	41,30
2,0	0,04	-174,84	10,83	93,30	0,07	-3,93	0,16	13,30
3,0	0,14	145,83	9,81	55,47	0,08	-14,01	0,12	9,23
4,0	0,32	93,91	9,01	13,83	0,08	-29,72	0,22	44,46
5,0	0,49	32,24	6,60	-30,45	0,07	-21,04	0,43	7,49
6,0	0,47	4,16	4,68	-57,76	0,09	-23,39	0,43	-19,43
7,0	0,43	-8,99	3,93	-84,31	0,11	-38,47	0,41	-34,55
8,0	0,36	-29,95	3,51	-116,47	0,12	-56,86	0,45	-49,91
9,0	0,35	-70,79	3,00	-157,62	0,11	-75,57	0,58	-71,54
10,0	0,48	-110,51	1,93	153,06	0,09	-77,42	0,77	-108,21

Таблица 3 — S-параметры при I_p = 35 мA, T = 25 °C


Частота,	S11 ,	Arg S11,	S21 ,	Arg S21,	S12 ,	Arg S12,	S22 ,	Arg S22,
ГГц	дБ	град	дБ	град	дБ	град	дБ	град
0,1	0,10	-3,32	13,63	172,07	0,06	0,44	0,06	6,87
1,0	0,07	-29,91	12,82	133,57	0,06	1,04	0,13	23,14
2,0	0,05	-128,71	11,21	92,57	0,07	-2,25	0,16	1,10
3,0	0,14	159,77	10,11	54,88	0,08	-12,25	0,10	-2,64
4,0	0,31	100,01	9,26	13,23	0,08	-28,22	0,20	46,02
5,0	0,48	35,04	6,76	-30,87	0,06	-19,44	0,42	7,00
6,0	0,46	6,58	4,80	-57,89	0,09	-21,72	0,42	-20,50
7,0	0,42	-6,24	4,04	-84,20	0,11	-36,97	0,41	-35,86
8,0	0,37	-26,89	3,63	-116,46	0,12	-55,51	0,44	-50,89
9,0	0,36	-67,57	3,15	-157,97	0,11	-74,74	0,57	-71,47
10,0	0,49	-109,22	2,02	151,60	0,09	-78,08	0,75	-107,78

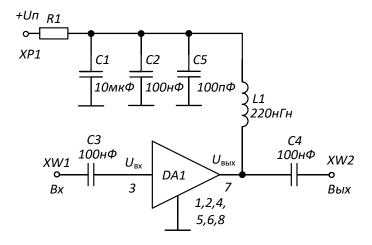
ГАБАРИТНЫЙ ЧЕРТЕЖ КОРПУСА KT-47 (SOT-89)

ПЛОЩАДКА ДЛЯ МОНТАЖА **КОРПУСА КТ-47 (SOT-89)**

Трассировка на верхнем слое платы

ПРЕДЕЛЬНЫЕ ЭКСПЛУАТАЦИОННЫЕ ПАРАМЕТРЫ

Напряжение питания (U _п)	0,065*R1+4,67 B
Режимный ток (I _p)	65 мА
Рабочая температура	-60 до +125 °C
Максимальная входная мощность (Р _{вх})	+13 дБм
Максимальная температура перехода (Т _і)	+150 °C
Тепловое сопротивление переход-корпус	80 °С/Вт


Наименование корпуса	Материал корпуса	Размер корпуса
KT-47	Пластмасса	4,25х4,6 мм²

НАЗНАЧЕНИЕ ВЫВОДОВ

Номер вывода	Обозначение	Назначение	Схема внутренних цепей вывода
1,2,4,5,6,8	GND	Земля	<u>°</u>
3	IN (Bx)	Вход	OUT/VCC
7	OUT (Вых), VCC (Uп)	Выход и напряжен ие питания	

ТИПОВАЯ СХЕМА ВКЛЮЧЕНИЯ

РЕКОМЕНДУЕМЫЕ ЗНАЧЕНИЯ РЕЗИСТОРА

Напряжение питания (U _П)	+5 B			
Режимный ток (I _p)	25 мА	30 мА	35 мА	
Номинальное сопротивление (R1)	16 Ом	12 Ом	10 Ом	
Рассеиваемая мощность	0,01 Вт	0,011 Вт	0,012 Вт	

ПРИМЕЧАНИЕ: Номиналы дроссельной катушки индуктивности L1 и разделительных конденсаторов (C3, C4) могут быть изменены в соответствии с используемым частотным диапазоном. Режимный ток I_p задаётся номиналом резистора R1 и напряжением питания U_n . Номинал резистора может быть рассчитан по формуле: R1 = $(U_n - U_{вых}) / I_p$

ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА

1324УВ7У1	Пластмассовый корпус КТ-47
1324УВ7Н4	Бескорпусное исполнение

По вопросам заказа обращаться:

ООО «ИПК «Электрон-Маш»

124365, г. Москва, г. Зеленоград, к1619, Телефон: +7 (495) 761-75-23

E-mail: info@electron-engine.ru

В связи с недостаточностью имеющейся справочной информации на микросхемы и модули отечественного производства ООО «ИПК «Электрон-Маш» поставило перед собой задачу по исследованию данной номенклатуры с последующим оформлением справочных материалов.

За содержание материалов предприятие-производитель изделия ответственности не несёт.

E-mail: info@electron-engine.ru Телефон: +7 (495)761-75-23