

ФУНКЦИОНАЛЬНАЯ СХЕМА

(вид сверху)

ПРИМЕНЕНИЕ

- Усилители в трактах РЧ и ПЧ
- СВЧ измерительное оборудование
- Беспроводная и сотовая связь
- Усилители спутникового сигнала

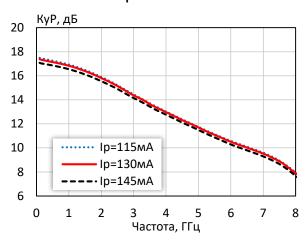
СПЕЦИФИКАЦИЯ

Диапазон рабочих частот	0 - 4,0	ГГц
Коэффициент усиления	17	дБ
Коэффициент шума	3,5	дБ
Выходная мощность	280	мВт
Напряжение питания	+6	В
Диапазон рабочих температур	-60 до +125	°C
Тип корпуса	KT-47	
Технологический процесс	GaAs pHEMT	

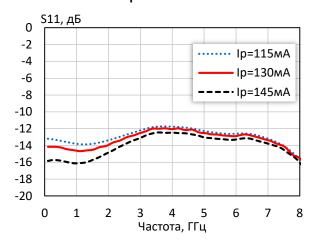
КРАТКОЕ ОПИСАНИЕ

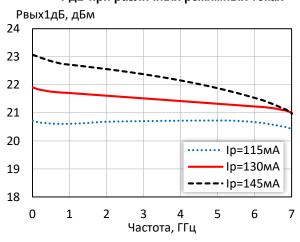
1324УВ11У1 — СВЧ МИС широкополосного усилителя с выходной мощностью до 280 мВт и диапазоном рабочих частот 0 — 4 ГГц, согласованного по входу и выходу с линией, имеющей волновое сопротивление 50 Ом. СВЧ МИС изготавливается в миниатюрном пластмассовом корпусе КТ-47 размером 4,25х4,6 мм².

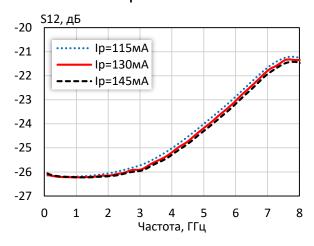
Выходную мощность усилителя можно регулировать в некоторых пределах, изменяя напряжение питания (U_n).

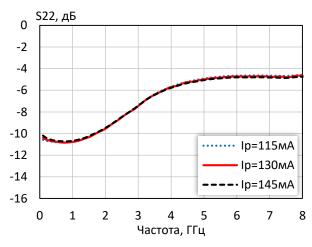

ОСНОВНЫЕ ПАРАМЕТРЫ

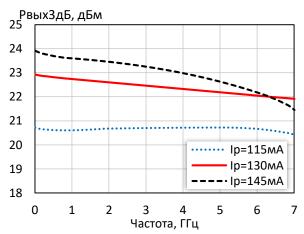
Электрические параметры при I _P = 115 мA, R1 = 10 Ом, T = 25 °C					
Параметр, единица измерения	Условия	мин.	тип.	макс.	
Диапазон рабочих частот, ГГц	К _{уР} > 5 дБ	0,1–4,0	0,01-6,5		
Коэффициент усиления на частоте 100 МГц, дБ	Р _{вх} = 0,01 мВт		17		
Коэффициент усиления на частоте 1,0 ГГц, дБ	Р _{вх} = 0,01 мВт	14,0	16,5		
Коэффициент усиления на частоте 4,0 ГГц, дБ	Р _{вх} = 0,01 мВт		12,7		
Неравномерность коэффициента усиления, дБ	Δf = 0,1–2,0 ГГц		1,5		
Выходная линейная непрерывная мощность, мВт	f _{вх} = 1,0 ГГц, I _p = 165,0 мА	280,0	330,0		
Коэффициент шума, дБ	f _{вх} = 1,0 ГГц		3,5	5,0	


E-mail: info@electron-engine.ru Телефон: +7 (495)761-75-23

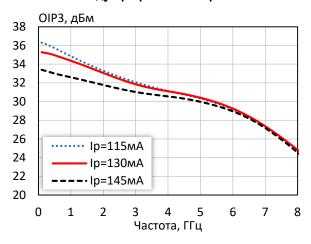

Коэффициент усиления при различных режимных токах


Коэффициент отражения от входа при различных режимных токах

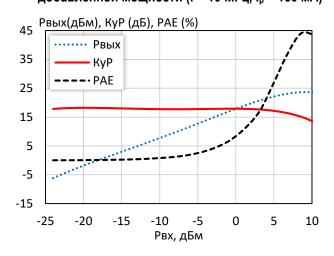

Выходная мощность при уровне компрессии K_{yP} на 1 дБ при различных режимных токах

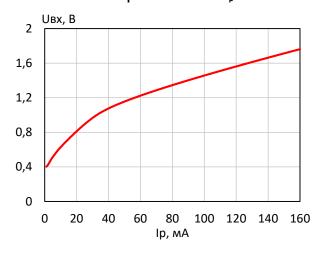

Коэффициент обратной передачи при различных режимных токах

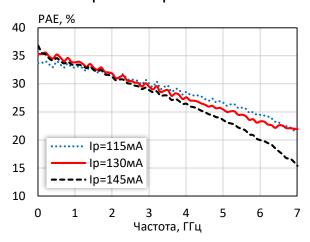
Коэффициент отражения от выхода при различных режимных токах

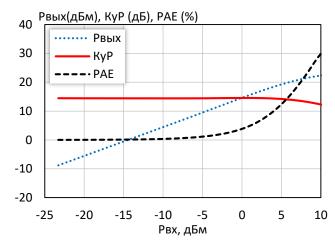


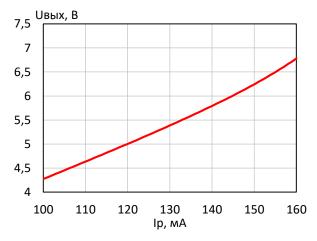
Выходная мощность при уровне компрессии K_{yP} на 3 дБ при различных режимных токах



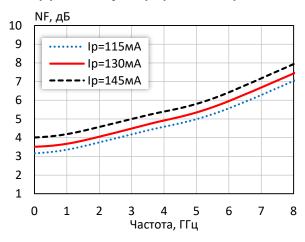

Точка пересечения интермодуляции третьего порядка по выходу при различных режимных токах


Выходная мощность, коэффициент усиления, КПД по добавленной мощности (f = 10 MFц, $I_p = 130 \text{ мA}$)

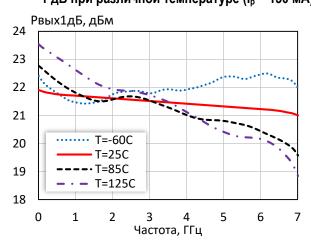

Входное напряжение покоя $U_{\text{вх}}$ при изменении режимного тока I_{p}

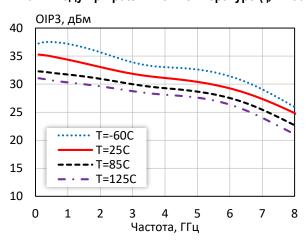

КПД по добавленной мощности в точке $P_{вых3дБ}$ при различных режимных токах

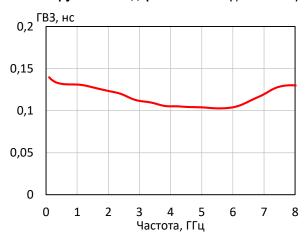
Выходная мощность, коэффициент усиления, КПД по добавленной мощности (f = 3 ГГц, I_p = 130 мA)

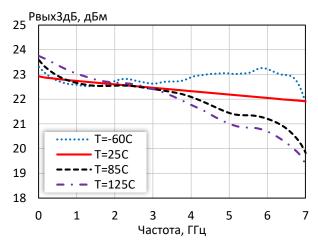


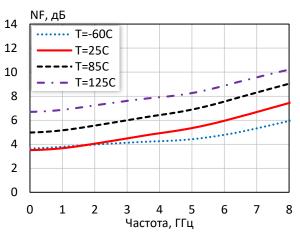
Выходное напряжение покоя $U_{\text{вых}}$ при изменении режимного тока I_{p}



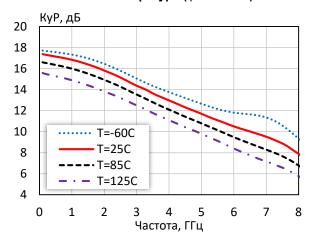

Коэффициент шума при различных режимных токах


Выходная мощность при уровне компрессии K_{yP} на 1 дБ при различной температуре (I_p = 130 мA)

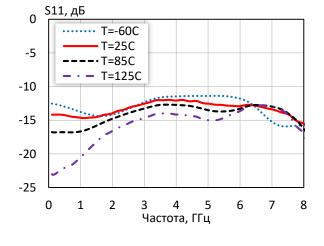

Точка пересечения интермодуляции третьего порядка по выходу при различной температуре ($I_p = 130 \text{ мA}$)

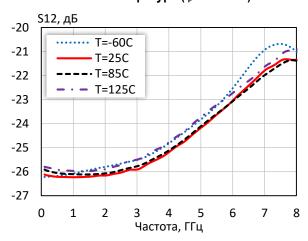

Групповая задержка сигнала (I_p = 130 мА)

Выходная мощность при уровне компрессии K_{yP} на 3 дБ при различной температуре (I_p = 130 мA)



Коэффициент шума при различной температуре $(I_p = 130 \ \text{мA})$




Коэффициент усиления при различной температуре (I_p = 130 мA)

Коэффициент отражения от входа при различной температуре (I_p = 130 мA)

Коэффициент обратной передачи при различной температуре (I_p = 130 мA)

Коэффициент отражения от выхода при различной температуре (I_p = 130 мA)

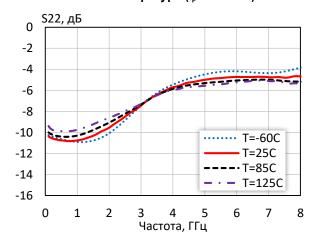


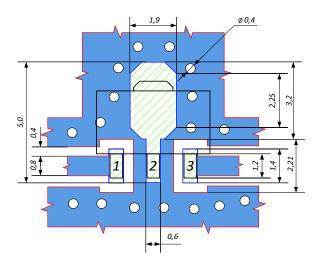
Таблица 1 — S-параметры при I_p = 115 мA, T = 25 °C

Частота,	S11	Arg S11,	S21	Arg S21,	S12	Arg S12,	S22	Arg S22,
ГГц		град		град		град		град
0,1	0,22	176,56	7,56	175,60	0,05	-1,68	0,31	174,26
1,0	0,20	129,14	7,04	131,64	0,05	-9,63	0,29	129,51
2,0	0,21	74,52	6,24	85,64	0,05	-19,00	0,33	83,06
3,0	0,25	37,03	5,27	43,38	0,05	-28,65	0,43	42,97
4,0	0,25	12,52	4,49	4,54	0,06	-38,24	0,52	10,30
5,0	0,24	-14,00	3,87	-32,96	0,06	-51,41	0,57	-21,95
6,0	0,23	-44,51	3,38	-69,87	0,07	-67,62	0,59	-52,70
7,0	0,22	-79,99	3,02	-109,72	0,08	-90,29	0,59	-87,87
8,0	0,17	-120,60	2,50	-155,22	0,09	-120,56	0,59	-135,40
9,0	0,10	-155,66	1,77	160,18	0,08	-152,32	0,62	33,96
10,0	0,18	112,52	1,00	126,31	0,07	174,87	0,67	144,23

Таблица 2 — S-параметры при I_p = 130 мA, T = 25 °C

Частота,	S11	Arg S11,	S21	Arg S21,	S12	Arg S12,	S22	Arg S22,
ГГц		град		град		град		град
0,1	0,20	176,14	7,43	174,92	0,05	-1,63	0,31	173,76
1,0	0,19	127,94	6,94	131,76	0,05	-9,96	0,29	129,87
2,0	0,20	72,37	6,17	85,75	0,05	-19,48	0,33	83,77
3,0	0,24	35,31	5,23	43,39	0,05	-29,05	0,43	43,64
4,0	0,25	10,96	4,45	4,48	0,06	-38,27	0,52	10,96
5,0	0,24	-15,95	3,85	-33,18	0,06	-51,14	0,56	-21,29
6,0	0,22	-47,03	3,35	-70,28	0,07	-67,00	0,58	-51,95
7,0	0,21	-82,50	2,99	-110,06	0,08	-89,41	0,58	-86,97
8,0	0,17	-123,68	2,48	-155,58	0,09	-119,42	0,58	-134,59
9,0	0,10	-161,40	1,76	159,67	0,08	-151,05	0,61	34,44
10,0	0,19	109,95	0,99	125,99	0,07	175,86	0,67	144,22

Таблица 3 — S-параметры при I_p = 145 мA, T = 25 °C


Частота,	S11	Arg S11,	S21	Arg S21,	S12	Arg S12,	S22	Arg S22,
ГГц		град		град		град		град
0,1	0,17	175,99	7,24	175,35	0,05	-1,26	0,31	173,38
1,0	0,16	125,09	6,72	131,83	0,05	-10,30	0,29	129,99
2,0	0,18	67,79	5,99	86,09	0,05	-19,88	0,33	84,17
3,0	0,22	31,68	5,09	43,59	0,05	-29,28	0,43	44,04
4,0	0,23	7,85	4,35	4,56	0,05	-38,45	0,52	11,30
5,0	0,22	-19,34	3,75	-33,26	0,06	-51,16	0,56	-20,92
6,0	0,21	-50,79	3,27	-70,41	0,07	-66,86	0,58	-51,52
7,0	0,20	-86,43	2,92	-110,14	0,08	-88,86	0,58	-86,27
8,0	0,16	-128,46	2,42	-155,70	0,09	-118,60	0,58	-133,87
9,0	0,10	-169,37	1,72	159,48	0,08	-150,28	0,61	34,74
10,0	0,19	107,31	0,97	125,66	0,07	176,56	0,66	144,35

ГАБАРИТНЫЙ ЧЕРТЕЖ КОРПУСА КТ-47 (SOT-89)

4,6 1,8 9,7 9,7 3 2 1

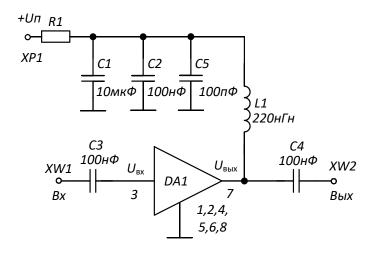
ПЛОЩАДКА ДЛЯ МОНТАЖА КОРПУСА КТ-47 (SOT-89)

- Окно в паяльной маске на верхнем слое платы

- Трассировка на верхнем слое платы

ПРЕДЕЛЬНЫЕ ЭКСПЛУАТАЦИОННЫЕ ПАРАМЕТРЫ

Напряжение питания (U _п)	+8 В при R = 10 Ом
Режимный ток (I _p)	160 мА
Рабочая температура	-60 до +125 °C
Максимальная входная мощность (Р _{вх})	18 дБм
Максимальная температура перехода (T _j)	+150 °C
Тепловое сопротивление переход-корпус	120 °С/Вт


Наименование корпуса	Материал корпуса	Размер корпуса
KT-47	пластмасса	4,25х4,6 мм ²

НАЗНАЧЕНИЕ ВЫВОДОВ

Номер вывода	Обозначение	Назначение	Схема внутренних цепей вывода
1,2,4,5,6,8	GND	Земля	<u>°</u>
3	IN (Bx)	Вход	OUT / VCC
7	OUT (Вых), VCC (Uп)	Выход и напряжение питания	

ТИПОВАЯ СХЕМА ВКЛЮЧЕНИЯ

РЕКОМЕНДУЕМЫЕ ЗНАЧЕНИЯ НАПРЯЖЕНИЯ ПИТАНИЯ

Напряжение питания (U _п)	+5 B	+ 6 B	+ 7 B	
Режимный ток (I _p)	100 мА	115 мА	145 мА	
Номинальное сопротивление (R1)	10 Ом			
Рассеиваемая мощность	0,4 Вт	0,558 Вт	0,805 Вт	

Справочный лист версия 1.0.0, Февраль 2021

ПРИМЕЧАНИЕ: Номиналы дроссельной катушки индуктивности и разделительных конденсаторов (C3, C4) могут быть изменены в соответствии с используемым частотным диапазоном. Режимный ток Ір задаётся номиналом резистора R1 и напряжением питания Uп.

СПИСОК КОМПОНЕНТОВ ПЕЧАТНОЙ ПЛАТЫ

L1	Дроссель 220 нГн		
С1 Конденсатор 10 мкФ			
C2	Конденсатор 100 нФ		
C5	Конденсатор 100 пФ		
C3, C4	Конденсатор 100 нФ		
R1	Резистор 27 Ом		
XW1, XW2	Разъем SMA 50 Ом		

ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА

1324УВ11У1	Пластмассовый корпус КТ-47
ПП-1324УВ11У1	Демонстрационная плата СВЧ усилителя

По вопросам заказа обращаться:

ООО «ИПК «Электрон-Маш»

124365, г. Москва, г. Зеленоград, к1619, Телефон: +7 (495) 761-75-23

E-mail: info@electron-engine.ru

В связи с недостаточностью имеющейся справочной информации на микросхемы и модули отечественного производства ООО «ИПК «Электрон-Маш» поставило перед собой задачу по исследованию данной номенклатуры с последующим оформлением справочных материалов.

За содержание материалов предприятие-производитель изделия ответственности не несёт.