HELLORADIO.RU — интернет-магазин средств связи
EN FR DE CN JP
QRZ.RU > Каталог схем и документации > Схемы наших читателей > Источники питания > Маломощный конденсаторный выпрямитель с ШИМ стабилизатором

Маломощный конденсаторный выпрямитель с ШИМ стабилизатором

Предлагаемый вашему вниманию бестрансформаторный конденсаторный выпрямитель работает с автостабилизацией выходного напряжения во всех возможных режимах работы (от холостого хода до номинальной нагрузки).

Это достигнуто за счет кардинального изменения принципа формирования выходного напряжения — не за счет падения напряжения от импульсов тока выпрямленных полуволн сетевого напряжения на сопротивлении стабилитрона, как в других подобных устройствах, а за счет изменения времени подключения диодного моста к накопительному конденсатору.

Схема стабилизированного конденсаторного выпрямителя приведена на рисунке 1. Параллельно выходу диодного моста включен транзистор VT1, работающий в ключевом режиме. База ключевого транзистора VT1 через пороговый элемент (стабилитрон VD3) соединена с накопительным конденсатором С2, отделенным по постоянному току от выхода моста диодом VD2 для исключения быстрого разряда при открытом VT1.

Схема стабилизированного конденсаторного выпрямителя

Рис. 1. Схема стабилизированного конденсаторного выпрямителя.

Пока напряжение на С2 меньше напряжения стабилизации VD3, выпрямитель работает известным образом. При увеличении напряжения на С2 и открывании VD3 транзистор VT1 также отрывается и шунтирует выход выпрямительного моста. Вследствие этого напряжение на выходе моста скачкообразно уменьшается практически до нуля, что приводит к уменьшению напряжения на С2 и последующему выключению стабилитрона и ключевого транзистора.

Далее напряжение на конденсаторе С2 снова увеличивается до момента включения стабилитрона и транзистора и т.д. Процесс автостабилизации выходного напряжения очень похож на функционирование импульсного стабилизатора напряжения с широт-но-импульсным регулированием.

Только в предлагаемом устройстве частота следования импульсов равна частоте пульсации напряжения на С2. Ключевой транзистор VT1 для уменьшения потерь должен быть с большим коэффициентом усиления, например, составной КТ972А, КТ829А, КТ827А и др. Увеличить выходное напряжение выпрямителя можно, применив более высоковольтный стабилитрон или два низковольтных, соединенных последовательно.

При двух стабилитронах Д814В и Д814Д и емкости конденсатора CI 2 мкФ выходное напряжение на нагрузке сопротивлением 250 Ом может составлять 23...24 В. По предложенной методике можно застабилизировать выходное напряжение одно-полупериодного диодно-конденсаторного выпрямителя, выполненного, например, по схеме рисунке 2.

Схема однополупериодного диодно-конденсаторного выпрямителя

Рис. 2. Схема однополупериодного диодно-конденсаторного выпрямителя.

Для выпрямителя с плюсовым выходным напряжением параллельно диоду VD1 включен п-р-п транзистор КТ972А или КТ829А, управляемый с выхода выпрямителя через стабилитрон VD3. При достижении на конденсаторе С2 напряжения, соответствующего моменту открывания стабилитрона, транзистор VT1 тоже открывается.

В результате амплитуда положительной полуволны напряжения, поступающего на С2 через диод VD2, уменьшается почти до нуля. При уменьшении же напряжения на С2 транзистор VT1, благодаря стабилитрону, закрывается, что приводит к увеличению выходного напряжения.

Процесс сопровождается широтно-импульсным регулированием длительности импульсов на входе VD2, следовательно, напряжение на конденсаторе С2 остается стабилизированным как на холостом ходу, так и под нагрузкой.

В выпрямителе с отрицательным выходным напряжением параллельно диоду VD1 нужно включить р-п-р транзистор КТ973А или КТ825А. Выходное стабилизированное напряжение на нагрузке сопротивлением 470 Ом — около 11 В, напряжение пульсации — 0,3...0,4 В.

В обоих предложенных вариантах бестрансформаторного выпрямителя стабилитрон работает в импульсном режиме при токе в единицы миллиампер, который никак не связан с током нагрузки выпрямителя, с разбросом емкости гасящего конденсатора и колебаниями напряжения сети. Поэтому потери в нем существенно уменьшены, и теплоотвод ему не требуется. Ключевому транзистору радиатор также не требуется.

Резисторы R1, R2 в этих схемах ограничивают входной ток при переходных процессах в момент включения устройства в сеть. Из-за неизбежного «дребезга» контактов сетевых вилки и розетки, процесс включения сопровождается серией кратковременных замыканий и разрывов цепи.

При одном из таких замыканий гасящий конденсатор С1 может зарядиться до полного амплитудного значения напряжения сети, т.е. примерно до 300 В. После разрыва и последующего замыкания цепи из-за «дребезга» это и сетевое напряжения могут сложиться и составить в сумме около 600 В.

Это наихудший случай, который необходимо учитывать для обеспечения надежной работы устройства. Конкретный пример: максимальный коллекторный ток транзистора КТ972А равен 4 А, поэтому суммарное сопротивление ограничительных резисторов должно составлять 600 В / 4 А = 150 Ом.

С целью уменьшения потерь сопротивление резистора R1 можно выбрать 51 Ом, а резистора R2 — 100 Ом. Их мощность рассеяния — не менее 0,5 Вт. Допустимый коллекторный ток транзистора КТ827А составляет 20 А, поэтому для него резистор R2 необязателен.

 А.П.Семьян - 500 схем для радиолюбителей. Источники питания.

Партнеры